|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
Прикладная математика
Матрицы Ляпунова для класса систем с экспоненциальным ядром
А. Н. Алисейко Санкт-Петербургский государственный университет, Российская Федерация,
199034, Санкт-Петербург, Университетская наб., 7–9
Аннотация:
Проблема нахождения матриц Ляпунова возникает при анализе устойчивости линейных стационарных систем с запаздыванием с помощью метода функционалов Ляпунова–Красовского. Матрица Ляпунова есть решение матричного дифференциального уравнения с запаздыванием, удовлетворяющим двум дополнительным условиям. Известно, что условием существования и единственности матриц Ляпунова является условие Ляпунова, т. е. отсутствие у системы собственных чисел, расположенных симметрично относительно нуля комплексной плоскости. В то же время методы построения матриц Ляпунова разработаны лишь для некоторых классов систем. В данной работе рассматриваются системы уравнений с распределенным запаздыванием, имеющие экспоненциальное интегральное ядро. Они уже описывались в статье В. Л. Харитонова, где задача нахождения матриц Ляпунова была сведена к получению решений вспомогательной системы дифференциальных уравнений без запаздывания с граничными условиями. Предложенные ранее граничные условия не обеспечивают единственности решения вспомогательной системы, а полученные В. Л. Харитоновым результаты не гарантируют, что решение вспомогательной системы позволит построить матрицу Ляпунова. Эти проблемы существенно отличают данный класс систем от хорошо изученного класса систем с одним запаздыванием и возникают вследствие неоднозначности выбора граничных условий для вспомогательной системы. В настоящей статье вводятся новые граничные условия, которые позволяют построить теорию, полностью аналогичную случаю систем с одним запаздыванием. Показывается, что решение вспомогательной системы с новыми граничными условиями позволяет построить матрицу Ляпунова. Устанавливается эквивалентность существования и единственности решения вспомогательной системы и условия Ляпунова. Таким образом, проверка существования и единственности матрицы Ляпунова может быть произведена в процессе ее построения. Библиогр. 12 назв.
Ключевые слова:
системы с запаздыванием, матрица Ляпунова.
Поступила: 16 февраля 2017 г. Принята к печати: 8 июня 2017 г.
Образец цитирования:
А. Н. Алисейко, “Матрицы Ляпунова для класса систем с экспоненциальным ядром”, Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 13:3 (2017), 228–240
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vspui334 https://www.mathnet.ru/rus/vspui/v13/i3/p228
|
|