|
Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления, 2016, выпуск 1, страницы 38–52
(Mi vspui275)
|
|
|
|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Прикладная математика
Анализ напряжений двухкомпонентной плоскости и полуплоскости при действии сосредоточенной силы для двух моделей гармонического материала
В. М. Мальков, Ю. В. Малькова, Т. О. Доманская Санкт-Петербургский государственный университет, Россия,
199034, Санкт-Петербург, Университетская наб., 7–9
Аннотация:
Получены аналитические решения нелинейных задач (плоская деформация) для двухкомпонентной плоскости и полуплоскости при действии сосредоточенной силы. Рассмотрены две модели гармонических материалов: полулинейный и Джона, которые позволяют использовать для решения плоских задач упругости методы комплексных функций. Приведены выражения для номинальных (условных) напряжений и напряжений Коши, а также текущих координат деформированной среды. Из общих выражений построены асимптотики указанных величин в окрестности точки приложения силы. Сделано сравнение сингулярных членов напряжений и перемещений для двух моделей материала. Библиогр. 15 назв.
Ключевые слова:
двухкомпонентная плоскость, плоская деформация, метод комплексных функций, сосредоточенная сила, асимптотические разложения.
Поступила: 26 ноября 2015 г.
Образец цитирования:
В. М. Мальков, Ю. В. Малькова, Т. О. Доманская, “Анализ напряжений двухкомпонентной плоскости и полуплоскости при действии сосредоточенной силы для двух моделей гармонического материала”, Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 2016, № 1, 38–52
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vspui275 https://www.mathnet.ru/rus/vspui/y2016/i1/p38
|
Статистика просмотров: |
Страница аннотации: | 98 | PDF полного текста: | 23 | Список литературы: | 25 | Первая страница: | 1 |
|