Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления, 2015, выпуск 1, страницы 33–41 (Mi vspui227)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Прикладная математика

О константах в неравенствах типа Джексона для наилучших приближений периодических дифференцируемых функций

В. В. Жук, О. А. Тумка, Н. А. Козлов

Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7/9
Список литературы:
Аннотация: Рассмотрено пространство непрерывных $2\,\pi$-периодических функций с равномерной нормой. Структурные свойства функций в настоящее время принято характеризовать посредством модулей непрерывности различных порядков. В 1911 г. Д. Джексон установил ряд фундаментальных теорем, дающих оценки наилучших приближений посредством модуля непрерывности первого порядка самой функции и ее производных. Эти результаты были позднее распространены на случай, когда оценки наилучших приближений производятся при помощи модулей непрерывности произвольного порядка. Такого типа неравенства играют важную роль в теории аппроксимации, и их изучению (в различных направлениях) посвящено большое количество работ многих авторов. Аналогичные соотношения принято называть прямыми теоремами теории аппроксимации или обобщенными неравенствами Джексона. В данной работе для широкого класса пространств получены новые оценки для постоянных, входящих в обобщенные неравенства Джексона для дифференцируемых функций, в ряде случаев улучшающие ранее известные. Основным аппаратом, используемым в работе, служат методы приближения, построенные на основе функций В. А. Стеклова. Библиогр. 12 назв.
Ключевые слова: наилучшее приближение, модули непрерывности, константы в неравенствах типа Джексона.
Поступила: 13 ноября 2014 г.
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.5
Образец цитирования: В. В. Жук, О. А. Тумка, Н. А. Козлов, “О константах в неравенствах типа Джексона для наилучших приближений периодических дифференцируемых функций”, Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 2015, № 1, 33–41
Цитирование в формате AMSBIB
\RBibitem{ZhuTumKoz15}
\by В.~В.~Жук, О.~А.~Тумка, Н.~А.~Козлов
\paper О константах в неравенствах типа Джексона для наилучших приближений периодических дифференцируемых функций
\jour Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр.
\yr 2015
\issue 1
\pages 33--41
\mathnet{http://mi.mathnet.ru/vspui227}
\elib{https://elibrary.ru/item.asp?id=22988791}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/vspui227
  • https://www.mathnet.ru/rus/vspui/y2015/i1/p33
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Статистика просмотров:
    Страница аннотации:187
    PDF полного текста:35
    Список литературы:28
    Первая страница:13
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024