|
К 300-ЛЕТИЮ СПБГУ
Обзор исследований по качественной теории дифференциальных уравнений в Санкт-Петербургском университете. I. Устойчивые периодические точки диффеоморфизмов с гомоклиническими точками, системы со слабогиперболическими инвариантными множествами
Н. А. Бегун, Е. В. Васильева, Т. Е. Звягинцева, Ю. А. Ильин Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7-9
Аннотация:
Данная статья является первой из цикла обзорных публикаций, посвященных результатам научных исследований, которые проводились на кафедре дифференциальных уравнений Санкт-Петербургского университета в последние 30 лет. Современные научные интересы сотрудников кафедры могут быть условно разделены на следующие направления и темы: исследование устойчивых периодических точек диффеоморфизмов с гомоклиническими точками, исследования систем со слабогиперболическими инвариантными множествами, локальная качественная теория существенно нелинейных систем, классификация фазовых портретов семейства кубических систем, условия устойчивости систем с гистерезисными нелинейностями и систем с нелинейностями, подчиненными обобщенным условиям Рауса - Гурвица (проблема Айзермана). В данной работе представлены недавние результаты исследований по первым двум из обозначенных выше тем. Изучение устойчивых периодических точек диффеоморфизмов с гомоклиническими точками проводилось в предположении, что устойчивое и неустойчивое многообразия гиперболической точки (точек) касаются друг друга в гомоклинической (гетероклинической) точке, причем гомоклиническая (гетероклиническая) точка не является точкой с конечным порядком касания. Исследования систем со слабогиперболическими инвариантными множествами проводилось для случая, когда нейтральное, устойчивое и неустойчивое линейные пространства не удовлетворяют условию Липшица.
Ключевые слова:
качественная теория дифференциальных уравнений, нетрансверсальная гомоклиническая точка и траектория, гетероклинический контур, устойчивость, гиперболичность, аттрактор, слабо гиперболическое инвариантное множество.
Поступила в редакцию: 15.09.2023 Исправленный вариант: 27.10.2023 Принята в печать: 09.11.2023
Образец цитирования:
Н. А. Бегун, Е. В. Васильева, Т. Е. Звягинцева, Ю. А. Ильин, “Обзор исследований по качественной теории дифференциальных уравнений в Санкт-Петербургском университете. I. Устойчивые периодические точки диффеоморфизмов с гомоклиническими точками, системы со слабогиперболическими инвариантными множествами”, Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 11:2 (2024), 211–227
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vspua294 https://www.mathnet.ru/rus/vspua/v11/i2/p211
|
|