|
МАТЕМАТИКА
Различные виды устойчивых периодических точек диффеоморфизма плоскости с гомоклинической орбитой
Е. В. Васильева Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7-9
Аннотация:
Рассматривается диффеоморфизм плоскости в себя с неподвижной гиперболической точкой, предполагается наличие нетрансверсальной гомоклинической точки. Устойчивое и неустойчивое многообразия касаются друг друга в гомоклинической точке, существуют различные способы касания устойчивого и неустойчивого многообразий. В работах Ш.Ньюхауса, Л.П.Шильникова и других авторов изучались диффеоморфизмы плоскости с нетрансверсальной гомоклинической точкой, в предположении, что эта точка является точкой касания конечного порядка. Из работ этих авторов следует, что в окрестности гомоклинической точки может лежать бесконечное множество устойчивых периодических точек, наличие такого множества зависит от свойств гиперболической точки. В данной работе предполагается, что гомоклиническая точка не является точкой, в которой касание устойчивого и неустойчивого многообразия является касанием конечного порядка. Выделяют счетное число видов периодических точек, лежащих в окрестности гомоклинической точки; точки, принадлежащие одному виду, называются n-обходными, где n - натуральное число. В предлагаемой работе показано, что в случае если касание не является касанием конечного порядка, окрестность нетрансверсальной гомоклинической точки может содержать бесконечное множество устойчивых однобходных, двухобходных или трехобходных периодических точек с отделенными от нуля характеристическими показателями.
Ключевые слова:
диффеоморфизм, нетрансверсальная гомоклиническая точка, устойчивость, характеристические показатели.
Поступила в редакцию: 23.10.2020 Исправленный вариант: 13.11.2020 Принята в печать: 17.12.2020
Образец цитирования:
Е. В. Васильева, “Различные виды устойчивых периодических точек диффеоморфизма плоскости с гомоклинической орбитой”, Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 8:2 (2021), 295–304; Vestn. St. Petersbg. Univ., Math., 8:3 (2021), 180–186
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vspua116 https://www.mathnet.ru/rus/vspua/v8/i2/p295
|
Статистика просмотров: |
Страница аннотации: | 35 | PDF полного текста: | 8 |
|