|
Вестник Самарского университета. Естественнонаучная серия, 2016, выпуск 3-4, страницы 51–62
(Mi vsgu510)
|
|
|
|
Математика
Начально-граничная задача для B-гиперболического уравнения с интегральным условием первого рода в прямоугольной области
Н. В. Зайцева Институт математики и механики им. Н.И. Лобачевского, Казанский (Приволжский) федеральный университет, 420008, Российская Федерация, г. Казань, ул. Кремлевская, 35
(публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Аннотация:
Для гиперболического уравнения с оператором Бесселя поставлена начально-граничная задача с интегральным нелокальным условием первого рода в прямоугольной области.
В работе поставленная задача с нелокальным интегральным условием первого рода эквивалентно сведена к локальной задаче с граничными условиями второго рода.
Методом спектрального анализа доказаны теоремы единственности и существования решения эквивалентной задачи. Решение построено в явном виде в виде ряда Фурье–Бесселя и приведено обоснование сходимости ряда в классе регулярных решений. Затем показана однозначная разрешимость первоначальной задачи.
Ключевые слова:
гиперболическое уравнение, оператор Бесселя, нелокальное интегральное условие, единственность, существование, ряд Фурье.
Поступила в редакцию: 18.05.2016
Образец цитирования:
Н. В. Зайцева, “Начально-граничная задача для B-гиперболического уравнения с интегральным условием первого рода в прямоугольной области”, Вестн. СамУ. Естественнонаучн. сер., 2016, № 3-4, 51–62
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vsgu510 https://www.mathnet.ru/rus/vsgu/y2016/i3/p51
|
Статистика просмотров: |
Страница аннотации: | 132 | PDF полного текста: | 69 | Список литературы: | 23 |
|