Вестник Самарского государственного технического университета. Серия «Физико-математические науки»
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Сотрудники журнала
Правила для авторов
Лицензионный договор
Редакционная политика

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестник Самарского государственного технического университета. Серия «Физико-математические науки», 2020, том 24, номер 3, страницы 469–505
DOI: https://doi.org/10.14498/vsgtu1726
(Mi vsgtu1726)
 

Механика деформируемого твердого тела

Общие свойства показателя скоростной чувствительности диаграмм деформирования, порождаемых линейной теорией вязкоупругости и существование максимума у его зависимости от скорости

А. В. Хохлов

Московский государственный университет имени М. В. Ломоносова, Научно-исследовательский институт механики, г. Москва, 119192, Россия (публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Список литературы:
Аннотация: Анализируется скоростная чувствительность семейства диаграмм деформирования, порождаемых физически линейным определяющим соотношением вязкоупругости Больцмана–Вольтерры с произвольной функцией релаксации в одноосных испытаниях с постоянными скоростями деформации. Выведено общее выражение для показателя скоростной чувствительности (скоростного упрочнения) и аналитически исследованы его общие качественные свойства: зависимость от деформации, скорости деформации и характеристик функции релаксации, диапазон значений, интервалы монотонности и существование точек экстремума, предельные значения при стремлении скорости деформации к нулю или бесконечности, способы определения по диаграммам деформирования или по кривым релаксации. Установлено, что (в рамках линейной теории вязкоупругости) этот показатель зависит не от двух независимых аргументов (деформации и скорости деформации), а только от их отношения, что он выражается через отношение касательного модуля к секущему и может быть вычислен по одной диаграмме деформирования с произвольной скоростью деформации, и что по заданной (или измеренной в испытаниях) функции скоростной чувствительности можно однозначно восстановить функцию релаксации. Доказано, что значения показателя скоростной чувствительности всегда лежат в интервале от нуля до единицы (т.е. линейное определяющее соотношение описывает только псевдопластические среды и не может описывать дилатантные) и могут быть сколь угодно близки к единице (верхней границе для псевдопластических сред), что как функция скорости он не только может монотонно возрастать или убывать, но может иметь точки экстремума, в частности точку максимума (при малообременительных ограничениях на функцию релаксации). Тем самым обнаружена неожиданная способность линейной теории вязкоупругости не только порождать семейство диаграмм деформирования с выраженными участками течения при практически постоянном напряжении, но и качественно описывать «сигмоидальную» форму зависимости напряжения от скорости деформации (в логарифмических осях) и очень высокую скоростную чувствительность, характерные для режима сверхпластического деформирования материалов.
Установленные свойства показателя скоростной чувствительности и его характерные особенности проиллюстрированы на примерах классических регулярных, сингулярных и фрактальных моделей вязкоупругости (Максвелла, Фойгта, Кельвина, Зенера, Бюргерса, Скотт–Блэра) и их параллельных соединений.
Ключевые слова: вязкоупругость, диаграммы деформирования, скоростное упрочнение, показатель скоростной чувствительности, функция скоростной чувствительности, псевдопластические среды, фрактальные модели, уравнения с дробной производной, сверхпластичность, сигмоидальная кривая, титановые и алюминиевые сплавы, керамики.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 17-08-01146_а
Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 17–08–01146_а).
Получение: 25 июля 2019 г.
Исправление: 23 июня 2020 г.
Принятие: 24 августа 2020 г.
Публикация онлайн: 31 августа 2020 г.
Реферативные базы данных:
Тип публикации: Статья
УДК: 539.37
MSC: 74D05, 74A20
Образец цитирования: А. В. Хохлов, “Общие свойства показателя скоростной чувствительности диаграмм деформирования, порождаемых линейной теорией вязкоупругости и существование максимума у его зависимости от скорости”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 24:3 (2020), 469–505
Цитирование в формате AMSBIB
\RBibitem{Kho20}
\by А.~В.~Хохлов
\paper Общие свойства показателя скоростной чувствительности диаграмм деформирования, порождаемых линейной теорией вязкоупругости и существование максимума у его зависимости от скорости
\jour Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки
\yr 2020
\vol 24
\issue 3
\pages 469--505
\mathnet{http://mi.mathnet.ru/vsgtu1726}
\crossref{https://doi.org/10.14498/vsgtu1726}
\elib{https://elibrary.ru/item.asp?id=45631181}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/vsgtu1726
  • https://www.mathnet.ru/rus/vsgtu/v224/i3/p469
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Статистика просмотров:
    Страница аннотации:330
    PDF полного текста:332
    Список литературы:25
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024