|
Механика деформируемого твердого тела
Общие свойства показателя скоростной чувствительности диаграмм деформирования, порождаемых линейной теорией вязкоупругости и существование максимума у его зависимости от скорости
А. В. Хохлов Московский государственный университет имени М. В. Ломоносова, Научно-исследовательский институт механики, г. Москва, 119192, Россия
(публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Аннотация:
Анализируется скоростная чувствительность семейства диаграмм деформирования, порождаемых физически линейным определяющим соотношением вязкоупругости Больцмана–Вольтерры с произвольной функцией релаксации в одноосных испытаниях с постоянными скоростями деформации.
Выведено общее выражение для показателя скоростной чувствительности (скоростного упрочнения) и аналитически исследованы его общие качественные свойства: зависимость от деформации, скорости деформации и характеристик функции релаксации, диапазон значений, интервалы монотонности и существование точек экстремума, предельные значения при стремлении скорости деформации к нулю или бесконечности, способы определения по диаграммам деформирования или по кривым релаксации. Установлено, что (в рамках линейной теории вязкоупругости) этот показатель зависит не от двух независимых аргументов (деформации и скорости деформации), а только от их отношения, что он выражается через отношение касательного модуля к секущему и может быть вычислен по одной диаграмме деформирования с произвольной скоростью деформации, и что по заданной (или измеренной в испытаниях) функции скоростной чувствительности можно однозначно восстановить функцию релаксации. Доказано, что значения показателя скоростной чувствительности всегда лежат в интервале от нуля до единицы (т.е. линейное определяющее соотношение описывает только псевдопластические среды и не может описывать дилатантные) и могут быть сколь угодно близки к единице (верхней границе для псевдопластических сред), что как функция скорости он не только может монотонно возрастать или убывать, но может иметь точки экстремума, в частности точку максимума (при малообременительных ограничениях на функцию релаксации). Тем самым обнаружена неожиданная способность линейной теории вязкоупругости не только порождать семейство диаграмм деформирования с выраженными участками течения при практически постоянном напряжении, но и качественно описывать «сигмоидальную» форму зависимости напряжения от скорости деформации (в логарифмических осях) и очень высокую скоростную чувствительность, характерные для режима сверхпластического деформирования материалов.
Установленные свойства показателя скоростной чувствительности и его характерные особенности проиллюстрированы на примерах классических регулярных, сингулярных и фрактальных моделей вязкоупругости (Максвелла, Фойгта, Кельвина, Зенера, Бюргерса, Скотт–Блэра) и их параллельных соединений.
Ключевые слова:
вязкоупругость, диаграммы деформирования, скоростное упрочнение, показатель скоростной чувствительности, функция скоростной чувствительности, псевдопластические среды, фрактальные модели, уравнения с дробной производной, сверхпластичность, сигмоидальная кривая, титановые и алюминиевые сплавы, керамики.
Получение: 25 июля 2019 г. Исправление: 23 июня 2020 г. Принятие: 24 августа 2020 г. Публикация онлайн: 31 августа 2020 г.
Образец цитирования:
А. В. Хохлов, “Общие свойства показателя скоростной чувствительности диаграмм деформирования, порождаемых линейной теорией вязкоупругости и существование максимума у его зависимости от скорости”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 24:3 (2020), 469–505
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vsgtu1726 https://www.mathnet.ru/rus/vsgtu/v224/i3/p469
|
Статистика просмотров: |
Страница аннотации: | 330 | PDF полного текста: | 332 | Список литературы: | 25 |
|