Вестник Самарского государственного технического университета. Серия «Физико-математические науки»
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Сотрудники журнала
Правила для авторов
Лицензионный договор
Редакционная политика

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестник Самарского государственного технического университета. Серия «Физико-математические науки», 2016, том 20, номер 2, страницы 354–365
DOI: https://doi.org/10.14498/vsgtu1481
(Mi vsgtu1481)
 

Математическое моделирование, численные методы и комплексы программ

Численное интегрирование краевых задач для нелинейных обыкновенных дифференциальных уравнений второго порядка произвольной структуры с использованием итерационных процедур

В. Н. Маклаков

Самарский государственный технический университет, г. Самара, 443100, Россия (публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Список литературы:
Аннотация: Предложена итерационная процедура численного интегрирования краевых задач для нелинейных обыкновенных дифференциальных уравнений второго порядка произвольной структуры. Исходное дифференциальное уравнение алгебраическими преобразованиями приведено к линейному неоднородному дифференциальному уравнению второго порядка с постоянными коэффициентами, правая часть которого представлена в виде линейной комбинации производных искомой функции вплоть до второй степени и исследуемого дифференциального уравнения произвольной структуры. При построении разностной краевой задачи были использованы многочлены Тейлора, что позволило отказаться от аппроксимации производных конечными разностями. Степень многочленов Тейлора может быть выбрана равной любому натуральному числу, большему или равному двум. Построенное линейное неоднородное дифференциальное уравнение имеет три произвольных коэффициента. Показано, что коэффициент при исходном дифференциальном уравнении произвольной структуры в правой части полученного неоднородного линейного дифференциального уравнения связан со сходимостью итерационной процедуры, а коэффициенты при производных искомой функции влияют на устойчивость разностной краевой задачи на каждой итерации. Теоретически установлены значения коэффициентов при производных искомой функции, обеспечивающие устойчивость разностной краевой задачи независимо от вида исходного уравнения. При выполнении численного эксперимента выявлено, что коэффициент, обеспечивающий сходимость итерационной процедуры, зависит от вида исходного дифференциального уравнения. Численный эксперимент показал, что увеличение степени используемого многочлена Тейлора приводит к уменьшению погрешности между точным и найденным численным решениями.
Ключевые слова: нелинейные обыкновенные дифференциальные уравнения, краевые задачи, численные методы, итерационные процедуры, ряды Тейлора.
Поступила в редакцию 09/III/2016
в окончательном варианте – 15/IV/2016
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.927.4:519.624.2
MSC: 34B99
Образец цитирования: В. Н. Маклаков, “Численное интегрирование краевых задач для нелинейных обыкновенных дифференциальных уравнений второго порядка произвольной структуры с использованием итерационных процедур”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 20:2 (2016), 354–365
Цитирование в формате AMSBIB
\RBibitem{Mak16}
\by В.~Н.~Маклаков
\paper Численное интегрирование краевых задач для~нелинейных обыкновенных
дифференциальных уравнений второго~порядка~произвольной структуры
с~использованием итерационных процедур
\jour Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки
\yr 2016
\vol 20
\issue 2
\pages 354--365
\mathnet{http://mi.mathnet.ru/vsgtu1481}
\crossref{https://doi.org/10.14498/vsgtu1481}
\zmath{https://zbmath.org/?q=an:06964492}
\elib{https://elibrary.ru/item.asp?id=27126260}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/vsgtu1481
  • https://www.mathnet.ru/rus/vsgtu/v220/i2/p354
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Статистика просмотров:
    Страница аннотации:335
    PDF полного текста:206
    Список литературы:49
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024