|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Дифференциальные уравнения и математическая физика
Задача с интегральным смещением для одномерного гиперболического уравнения
Л. С. Пулькинаa, А. Е. Савенковаb a Самарский национальный исследовательский университет имени академика С. П. Королева, г. Самара, 443086, Россия
b Самарский государственный технический университет, г. Самара, 4430100, Россия
(публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Аннотация:
Рассмотрена задача с нелокальным интегральным условием второго рода для одномерного гиперболического уравнения в прямоугольной области. Доказаны существование и единственность обобщенного решения задачи. Для доказательства существования и единственности обобщенного решения поставленной задачи предложен новый метод исследования задач с интегральными условиями. Предложенный в работе метод позволил отказаться от некоторых условий на входные данные, обеспечивающих разрешимость поставленной задачи, а именно от требования обратимости оператора, порождаемого нелокальным условием. Суть данного метода состоит в эквивалентной замене заданного нелокального условия другим, также нелокальным, но содержащим в качестве внеинтегрального члена значения выводящей производной неизвестной функции на боковой границе. Установленная эквивалентность условий позволила перейти к задаче, для доказательства однозначной разрешимости которой применен метод компактности, зарекомендовавший себя как эффективный метод исследования разрешимости начально-краевых задач и задач с нелокальными условиями. С помощью метода Галеркина построена последовательность приближенных решений. Для продолжения исследования разрешимости задачи получены априорные оценки решения в пространстве Соболева. С помощью выведенных оценок доказано утверждение о возможности выделить из построенной методом Галеркина последовательности приближенных решений подпоследовательность, которая слабо сходится к решению задачи. В процессе доказательства разрешимости поставленной задачи обнаружилась интересная связь нелокальных интегральных условий с динамическими условиями.
Ключевые слова:
задача со смещением, гиперболическое уравнение, нелокальные интегральные условия, обобщенное решение, пространство Соболева, метод Галеркина.
Поступила в редакцию 09/III/2016 в окончательном варианте – 22/IV/2016
Образец цитирования:
Л. С. Пулькина, А. Е. Савенкова, “Задача с интегральным смещением для одномерного гиперболического уравнения”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 20:2 (2016), 276–289
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vsgtu1480 https://www.mathnet.ru/rus/vsgtu/v220/i2/p276
|
Статистика просмотров: |
Страница аннотации: | 674 | PDF полного текста: | 364 | Список литературы: | 97 | Первая страница: | 1 |
|