|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Вычислительная математика
Оценка порядка аппроксимации матричного метода численного интегрирования краевых задач для линейных
неоднородных обыкновенных дифференциальных уравнений второго порядка
В. Н. Маклаков Самарский государственный технический университет, г. Самара, 443100, Россия
(публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Аннотация:
Использование трёх первых членов разложения в ряд Тейлора искомой функции при аппроксимации производных конечными разностями приводит ко второму порядку аппроксимации традиционного метода численного интегрирования краевых задач для линейных обыкновенных дифференциальных уравнений второго порядка с переменными коэффициентами. В работе рассмотрен предложенный ранее метод численного интегрирования, использующего средства матричного исчисления, в котором аппроксимация производных конечными разностями не использовалась. Согласно указанному методу при составлении системы разностных уравнений может быть использовано произвольное число членов разложения в ряд Тейлора искомого решения задачи. При использовании трёх первых членов разложения система разностных уравнений совпадает с традиционной системой. В работе дана оценка невязки и порядка аппроксимации метода в зависимости от числа используемых членов разложения в ряд Тейлора. Теоретически показано, что для краевой задачи с граничными условиями первого рода порядок аппроксимации метода возрастает прямо пропорционально с увеличением числа используемых членов разложения в ряд Тейлора лишь для нечётных значений этого числа. Для чётных значений числа членов порядок аппроксимации совпадает с порядком аппроксимации для числа, меньшего на единицу нечётного значения. Для краевых задач с граничными условиями второго и третьего рода порядок аппроксимации оказался прямо пропорциональным числу используемых членов разложения в ряд Тейлора искомого решения задачи независимо от чётности. В этих случаях порядок аппроксимации в граничных точках, следовательно, и всей задачи, оказался на единицу меньше порядка для внутренних точек сетки разбиения отрезка интегрирования. Дан метод повышения порядка аппроксимации в граничных точках до порядка аппроксимации во внутренних точках сетки. Теоретические выводы подтверждены численным экспериментом для краевой задачи с граничными условиями первого и третьего рода.
Ключевые слова:
обыкновенные дифференциальные уравнения второго порядка, краевые задачи, граничные условия, порядок аппроксимации, численные методы, многочлены Тейлора.
Поступила в редакцию 26/VII/2014 в окончательном варианте – 16/VIII/2014
Образец цитирования:
В. Н. Маклаков, “Оценка порядка аппроксимации матричного метода численного интегрирования краевых задач для линейных
неоднородных обыкновенных дифференциальных уравнений второго порядка”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 3(36) (2014), 143–160
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vsgtu1364 https://www.mathnet.ru/rus/vsgtu/v136/p143
|
Статистика просмотров: |
Страница аннотации: | 761 | PDF полного текста: | 280 | Список литературы: | 75 |
|