Вестник Самарского государственного технического университета. Серия «Физико-математические науки»
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Сотрудники журнала
Правила для авторов
Лицензионный договор
Редакционная политика

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестник Самарского государственного технического университета. Серия «Физико-математические науки», 2015, том 19, номер 1, страницы 136–154
DOI: https://doi.org/10.14498/vsgtu1335
(Mi vsgtu1335)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Дифференциальные уравнения и математическая физика

Обратная задача для одного нелинейного уравнения в частных производных восьмого порядка

Т. К. Юлдашев

Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева, г. Красноярск, 660014, Россия (публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Список литературы:
Аннотация: Изучены вопросы разрешимости обратной задачи для нелинейного уравнения в частных производных восьмого порядка, левая часть которого является суперпозицией псевдопараболического и псевдогиперболического операторов четвертого порядка. Обоснована применимость метода Фурье разделения переменных при изучении смешанной и обратной задач для нелинейного уравнения в частных производных восьмого порядка. С помощью метода разделения переменных смешанная задача сведена к изучению счетной системы нелинейных интегральных уравнений Вольтерра второго рода. Использование заданного интегрального условия привело к изучению нелинейного интегрального уравнения Вольтерра первого рода относительно второй неизвестной функции (относительно функции восстановления). С помощью неклассического интегрального преобразования однозначное восстановление второй неизвестной функции сведено к изучению однозначной разрешимости нелинейного интегрального уравнения Вольтерра второго рода. В результате получена система из двух нелинейных интегральных уравнений Вольтерра второго рода относительно двух неизвестных функций. Эта система однозначно разрешена с помощью метода последовательных приближений. Далее изучена устойчивость решений смешанной и обратной задач относительно начальных и дополнительно заданных функций.
Ключевые слова: обратная задача, нелинейное уравнение в частных производных, уравнение восьмого порядка, суперпозиция двух операторов, корректность решения.
Поступила в редакцию 24/VII/2014
в окончательном варианте – 15/X/2014
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.957
MSC: 35K70, 35R30
Образец цитирования: Т. К. Юлдашев, “Обратная задача для одного нелинейного уравнения в частных производных восьмого порядка”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 19:1 (2015), 136–154
Цитирование в формате AMSBIB
\RBibitem{Yul15}
\by Т.~К.~Юлдашев
\paper Обратная задача для одного нелинейного уравнения в частных производных восьмого порядка
\jour Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки
\yr 2015
\vol 19
\issue 1
\pages 136--154
\mathnet{http://mi.mathnet.ru/vsgtu1335}
\crossref{https://doi.org/10.14498/vsgtu1335}
\zmath{https://zbmath.org/?q=an:06968953}
\elib{https://elibrary.ru/item.asp?id=23681747}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/vsgtu1335
  • https://www.mathnet.ru/rus/vsgtu/v219/i1/p136
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024