Вестник Самарского государственного технического университета. Серия «Физико-математические науки»
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Сотрудники журнала
Правила для авторов
Лицензионный договор
Редакционная политика

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестник Самарского государственного технического университета. Серия «Физико-математические науки», 2014, выпуск 2(35), страницы 115–124
DOI: https://doi.org/10.14498/vsgtu1320
(Mi vsgtu1320)
 

Механика деформируемого твердого тела

Обратная задача теории ползучести для неупрочняющегося тела

И. Ю. Цвелодуб

Институт гидродинамики им. М. А. Лаврентьева СО РАН, г. Новосибирск, 630090, Россия (публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Список литературы:
Аннотация: Формулируется и решается задача о формировании тела постоянными внешними силами в условиях установившейся ползучести в течение заданного времени $t_*$ таким образом, чтобы после снятия нагрузок перемещения точек поверхности принимали заданные значения. Рассматривается случай малых деформаций. При определённых предположениях и ограничениях доказывается теорема единственности для решения данной задачи. Анализируются прикладные вопросы задачи нахождения внешних воздействий, которые необходимы для получения требуемой формы тела за заданное время в условиях реологического деформирования после снятия внешних сил $($с учётом упругой разгрузки$)$. Детально выполнен анализ тонкостенной изотропной пластины для случая плоского напряжённого состояния. Решение для перемещений ищется в виде ряда по малому параметру. Приводится модельное решение для круглой пластинки единичного радиуса под действием постоянных внешних нагрузок, которая после после ползучести и упругой разгрузки должна иметь заданное поле перемещений.
Ключевые слова: установившаяся ползучесть, обратная краевая задача, формообразование, постоянные нагрузки, малые деформации, постулат Друккера для вязких деформаций, круглая тонкая пластина.
Поступила в редакцию 25/IV/2014
в окончательном варианте – 13/V/2015
Реферативные базы данных:
Тип публикации: Статья
УДК: 539.376
MSC: Primary 74G75; Secondary 74C10, 74K20
Образец цитирования: И. Ю. Цвелодуб, “Обратная задача теории ползучести для неупрочняющегося тела”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2(35) (2014), 115–124
Цитирование в формате AMSBIB
\RBibitem{Tsv14}
\by И.~Ю.~Цвелодуб
\paper Обратная задача теории ползучести для неупрочняющегося тела
\jour Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки
\yr 2014
\vol 2(35)
\pages 115--124
\mathnet{http://mi.mathnet.ru/vsgtu1320}
\crossref{https://doi.org/10.14498/vsgtu1320}
\zmath{https://zbmath.org/?q=an:06968880}
\elib{https://elibrary.ru/item.asp?id=22813982}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/vsgtu1320
  • https://www.mathnet.ru/rus/vsgtu/v135/p115
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Статистика просмотров:
    Страница аннотации:356
    PDF полного текста:221
    Список литературы:48
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024