Вестник Самарского государственного технического университета. Серия «Физико-математические науки»
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Сотрудники журнала
Правила для авторов
Лицензионный договор
Редакционная политика

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестник Самарского государственного технического университета. Серия «Физико-математические науки», 2013, выпуск 1(30), страницы 245–252
DOI: https://doi.org/10.14498/vsgtu1224
(Mi vsgtu1224)
 

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

Труды Третьей Международной конференции «Математическая физика и её приложения»
Механика и классическая теория поля

Об одном классе дробных дифференциальных уравнений математических моделей динамических систем с памятью

Е. Н. Огородников

Самарский государственный технический университет, г. Самара, 443100, Россия (публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Список литературы:
Аннотация: Рассмотрено дифференциальное уравнение с дробными производными Римана–Лиувилля, которое предлагается в качестве модельного дробно-осцилляционного уравнения для описания колебательных процессов в динамических системах с памятью. В основе его вывода лежит гипотеза о неидеальной вязкоупругой связи, которая ассоциируется с дробным аналогом реологической модели Зенера, представляющей собой в классическом случае параллельное соединение элемента Максвелла и идеальной пружины. Показано, что начальные задачи типа Коши эквивалентным образом редуцируются к интегральным уравнениям вольтерровского типа с достаточно гладкими ядрами,что позволяет воспользоваться методом последовательных приближений. Отмечено, что подобные дифференциальные уравнения могут представлять интерес в качестве математических моделей поведения нелинейных динамических систем.
Ключевые слова: дифференциальные и интегральные уравнения с дробными операторами Римана–Лиувилля, дробные осцилляторы, дробно-осциляционные уравнения, реологические модели вязкоупругого тела с памятью, специальные функции типа Миттаг–Леффлера, интегральные уравнения Вольтерры со специальными функциями в ядрах.
Поступила в редакцию 27/I/2013
в окончательном варианте – 17/III/2013
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.925.42
MSC: Primary 34A08; Secondary 26A33, 45K05
Образец цитирования: Е. Н. Огородников, “Об одном классе дробных дифференциальных уравнений математических моделей динамических систем с памятью”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 1(30) (2013), 245–252
Цитирование в формате AMSBIB
\RBibitem{Ogo13}
\by Е.~Н.~Огородников
\paper Об одном классе дробных дифференциальных уравнений математических моделей динамических систем с~памятью
\jour Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки
\yr 2013
\vol 1(30)
\pages 245--252
\mathnet{http://mi.mathnet.ru/vsgtu1224}
\crossref{https://doi.org/10.14498/vsgtu1224}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/vsgtu1224
  • https://www.mathnet.ru/rus/vsgtu/v130/p245
  • Эта публикация цитируется в следующих 2 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Статистика просмотров:
    Страница аннотации:548
    PDF полного текста:278
    Список литературы:67
    Первая страница:1
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024