|
Вестник Московского университета. Серия 1: Математика. Механика, 1983, номер 5, страницы 4–7
(Mi vmumm3525)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Математика
Многообразия, порожденные неприводимыми представлениями алгебр Ли
А. Х. Кушкулей, Ю. П. Размыслов
Аннотация:
Доказано, что если точные неприводимые представления $V_1$, $V_2$ алгебр Ли $\mathfrak{G}_1$, $\mathfrak{G}_2$ над алгебраически замкнутым полем имеют одни и те же тождества, то пары $(U_1,\mathfrak{G}_2)$,
$(U_2,\mathfrak{G}_2)$, где $U_i$ – ассоциативная подалгебра в $\operatorname{End}_KV_i$, которая порождена $\mathfrak{G}_i$, изоморфны.
Библиогр. 6.
Поступила в редакцию: 12.02.1982
Образец цитирования:
А. Х. Кушкулей, Ю. П. Размыслов, “Многообразия, порожденные неприводимыми представлениями алгебр Ли”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1983, № 5, 4–7
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vmumm3525 https://www.mathnet.ru/rus/vmumm/y1983/i5/p4
|
Статистика просмотров: |
Страница аннотации: | 71 | PDF полного текста: | 27 |
|