|
Вычислительные методы и программирование, 2010, том 11, выпуск 1, страницы 1–6
(Mi vmp288)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Вычислительные методы и приложения
Аддитивные схемы (схемы расщепления) для систем уравнений с частными производными
П. Н. Вабищевич Институт математического моделирования РАН
Аннотация:
Рассматриваются разностные аппроксимации по времени
при приближенном решении задачи Коши для специальной системы эволюционных
уравнений первого порядка.
Построены безусловно устойчивые двухслойные операторно-разностные схемы с
весами.
Второй класс разностных схем базируется на формальном переходе
к явным операторно-разностным схемам для эволюционного уравнения
второго порядка при явно-неявных аппроксимациях
отдельных уравнений системы. Обсуждаются вопросы регуляризации
таких схем для получения безусловно устойчивых операторно-разностных схем.
Построены схемы расщепления, которые связаны с решением простейших задач на
каждом шаге по времени.
Статья рекомендована к печати программным комитетом
международной научной конференции “Математическое моделирование и
вычислительная физика 2009” (MMCP2009, http://mmcp2009.jinr.ru).
Ключевые слова:
задача Коши; системы эволюционных уравнений; операторно-разностные схемы; устойчивость.
Образец цитирования:
П. Н. Вабищевич, “Аддитивные схемы (схемы расщепления) для систем уравнений с частными производными”, Выч. мет. программирование, 11:1 (2010), 1–6
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vmp288 https://www.mathnet.ru/rus/vmp/v11/i1/p1
|
Статистика просмотров: |
Страница аннотации: | 216 | PDF полного текста: | 99 | Список литературы: | 1 |
|