|
Владикавказский математический журнал, 2007, том 9, номер 1, страницы 30–37
(Mi vmj85)
|
|
|
|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
A note on weakly $\aleph_1$-separable $p$-groups
P. V. Danchev Plovdiv State University «Paissii Hilendarski», Plovdiv, Bulgaria
Аннотация:
It is well-known by Hill-Griffith that there exist $\aleph_1$-separable $p$-primary groups which are not direct sums of cycles. A problem of challenging interest, mainly due to Hill (Rocky Mount. J. Math., 1971), is under what extra circumstances on the group structure this holds untrue, that is every $\aleph_1$-separable $p$-group is a direct sum of cyclic groups. We prove here that any weakly $\aleph_1$-separable $p$-group of cardinality not exceeding $\aleph_1$ is quasi-complete precisely when it is a bounded direct sum of cycles, thus partly answering the posed question in the affirmative.
Ключевые слова:
weakly $\aleph_1$-separable groups, quasi-complete groups, torsion-complete groups, bounded groups.
Поступила в редакцию: 03.07.2006
Образец цитирования:
P. V. Danchev, “A note on weakly $\aleph_1$-separable $p$-groups”, Владикавк. матем. журн., 9:1 (2007), 30–37
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vmj85 https://www.mathnet.ru/rus/vmj/v9/i1/p30
|
Статистика просмотров: |
Страница аннотации: | 323 | PDF полного текста: | 92 | Список литературы: | 67 | Первая страница: | 1 |
|