|
О связи полиномов Бернштейна и Канторовича для симметричного модуля
И. В. Окорочковa, И. В. Тихоновb, В. Б. Шерстюковc a Московский педагогический государственный университет, Россия, 107140, Москва, ул. Краснопрудная, 14
b Московский государственный университет имени М. В. Ломоносова, Россия, 119991, Москва, ГСП-1, Ленинские горы, 1
c Национальный исследовательский ядерный университет «МИФИ»,
Россия, 115409, Москва, Каширское шоссе, 31
Аннотация:
Настоящая работа подготовлена на основе доклада, сделанного авторами в рамках XVI Международной научной конференции «Порядковый анализ и смежные вопросы математического моделирования. Теория операторов и дифференциальные уравнения» (Владикавказ, сентябрь 2021 г.). Дается краткий обзор наших недавних результатов о связи полиномов Бернштейна и Канторовича для важного примера — симметричного модуля. Хорошо известно, что подобные негладкие функции играют особую роль в теории аппроксимации. Посредством полученных соотношений исследование полиномов Канторовича удается во многом свести к прямому использованию свойств полиномов Бернштейна. В частности, на основном отрезке $[0,1]$ рассмотрено уклонение полиномов Канторовича от порождающего их симметричного модуля. Помимо весьма точных оценок сверху и снизу отмечена простая асимптотическая формула, действующая для уклонения во всех точках $x\in[0,1]$ при $n\rightarrow\infty$. Характер сходимости полиномов Канторовича оказывается принципиально иным по сравнению с тем, что дают на $[0,1]$ полиномы Бернштейна. Приведены также новые результаты о сходимости полиномов Канторовича в комплексной плоскости. Указано точное множество сходимости, совпадающее с множеством сходимости полиномов Бернштейна. Это так называемый компакт Канторовича, ограниченный лемнискатой $|4z(1-z)|=1$. Всюду на компакте найдена скорость сходимости полиномов Канторовича к соответствующей предельной функции. В связи с лимитированным объемом статьи мы излагаем только схему рассуждений. Подробные доказательства планируется привести отдельно.
Ключевые слова:
полиномы Бернштейна, полиномы Канторовича, симметричный модуль, скорость сходимости, оценки уклонения, сходимость в комплексной плоскости.
Поступила в редакцию: 29.10.2021
Образец цитирования:
И. В. Окорочков, И. В. Тихонов, В. Б. Шерстюков, “О связи полиномов Бернштейна и Канторовича для симметричного модуля”, Владикавк. матем. журн., 24:1 (2022), 87–99
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vmj803 https://www.mathnet.ru/rus/vmj/v24/i1/p87
|
Статистика просмотров: |
Страница аннотации: | 212 | PDF полного текста: | 48 | Список литературы: | 23 |
|