|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
О пространстве функций, голоморфных в ограниченной выпуклой области и гладких вплоть до границы, и его сопряженном
И. Х. Мусин Институт математики с вычислительным центром УФИЦ РАН,
Россия, 450077, Уфа, ул. Чернышевского, 112
Аннотация:
В работе рассматривается локально выпуклое пространство функций, голоморфных в ограниченной выпуклой области многомерного комплексного пространства и гладких вплоть до границы, с топологией, определяемой счетным семейством норм, образованных при помощи семейства ${\mathfrak M}$ логарифмически выпуклых последовательностей положительных чисел специального вида. Благодаря условиям на указанные последовательности данное пространство является пространством Фреше — Шварца. Изучается задача описания сильного сопряженного для этого пространства в терминах преобразования Лапласа функционалов. Интерес к ней связан с исследованиями Б. А. Державца классических проблем теории линейных дифференциальных операторов с постоянными коэффициентами, А. В. Абанина, С. В. Петрова и К. П. Исаева современных проблем теории абсолютно представляющих систем в различных пространствах функций, голоморфных в выпуклых областях комплексного пространства, с заданной граничной гладкостью, при решении которых важную роль сыграли полученные ими теоремы типа Пейли — Винера — Шварца. Основной результат работы, полученный в теореме 1, утверждает, что преобразование Лапласа линейных непрерывных функционалов устанавливает изоморфизм между сильным сопряженным к рассматриваемому функциональному пространству и некоторым пространством целых функций экспоненциального типа в ${\mathbb C}^n $, представляющим собой внутренний индуктивный предел весовых банаховых пространств целых функций. Отметим, что в рассматриваемом случае удалось получить аналитическую реализацию сопряженного пространства при меньших ограничениях на семейство ${\mathfrak M}$ по сравнению с работой автора 2002 г. Основу доказательства теоремы 1 в настоящей работе составляют схема, предложенная М. Наймарком и Б. А. Тейлором, и ряд предыдущих результатов автора.
Ключевые слова:
преобразование Лапласа, целые функции, логарифмически выпуклая последовательность.
Поступила в редакцию: 08.05.2020
Образец цитирования:
И. Х. Мусин, “О пространстве функций, голоморфных в ограниченной выпуклой области и гладких вплоть до границы, и его сопряженном”, Владикавк. матем. журн., 22:3 (2020), 100–111
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vmj736 https://www.mathnet.ru/rus/vmj/v22/i3/p100
|
Статистика просмотров: |
Страница аннотации: | 158 | PDF полного текста: | 34 | Список литературы: | 24 |
|