Аннотация:
Непрерывный мониторинг вариаций объемной активности радона с целью поиска ее аномальных значений, предшествующих сейсмическим событиям, является одной из эффективных методик исследования напряженно-деформированного состояния геосреды. Предлагается задача Коши, описывающая перенос радона с учетом его накопления в камере и наличия эффекта памяти геосреды. Модельное уравнение представляет собой нелинейное дифференциальное уравнение с непостоянными коэффициентами с производной в смысле Герасимова-Капуто дробного переменного порядка. В ходе математического моделирования, в среде MATLAB, переноса радона эредитарной $\alpha$(t)-моделью получено хорошее соответствие с экспериментальными данными. Это указывает на то, что эредитарная $\alpha$(t)-модель переноса радона является более гибкой, что позволяет с помощью нее описывать различные аномальные вариаций в значениях объемной активности радона в следствии напряженно-деформированного состояния геосреды. Показано, что порядок дробной производной может отвечать за интенсивность процесса переноса радона связанную с характеристиками геосреды. Показано, что за счет порядка дробной производной, а также квадратичной нелинейности в модельном уравнении результаты численного моделирования дают лучшую аппроксимацию экспериментальных данных радонового мониторинга, чем по классическим моделям.
Ключевые слова:математическое моделирование, нелинейные уравнения, эффект насыщения, дробные уравнения, дробные производные, эредитарность, эффекты памяти, нелокальность по времени, объёмная активность радона, напряженно-деформированное состояние, геосреда, предвестники землетрясений.
Исследования выполнены в рамках гранта Президента РФ МД-758.2022.1.1 по теме «Развитие математических моделей дробной динамики с целью исследования колебательных процессов и процессов с насыщением».
Образец цитирования:
Д. А. Твёрдый, Е. О. Макаров, Р. И. Паровик, “Исследования напряженно-деформированного состояния геосреды эманационными методами на примере $\alpha$(t)-модели переноса радона”, Вестник КРАУНЦ. Физ.-мат. науки, 44:3 (2023), 86–104