Аннотация:
В работе исследуется смешанная краевая задача для гиперболического уравнения третьего порядка с вырождением порядка внутри области. В положительной части области рассматриваемое уравнение совпадает с уравнением Аллера, которое является уравнением третьего порядка гиперболического типа, хотя его принято называть уравнением псевдопараболического типа. А в отрицательной части области оно совпадает с вырождающимся гиперболическим уравнением первого рода, частным случаем которого является уравнение Бицадзе-Лыкого. Для исследуемой задачи доказана теорема существования и единственности регулярного решения. Единственность решения исследуемой задачи доказана методом Трикоми. Относительно следов искомого решения найдены соответствующие фундаментальные соотношения. С помощью метода интегральных уравнений вопрос существования решения задачи эквивалентно редуцируется к вопросу о разрешимости интегрального уравнения Вольтерра второго рода относительно следа производной искомого решения. Согласно общей теории линейных интегральных уравнений Вольтерра второго рода, полученное уравнение разрешимо единственным образом в классе регулярных функций. Решение исследуемой задачи можно выписать в явном виде как решение смешанной задача для уравнения Аллера в положительной части области и как решение задачи Коши для вырождающегося гиперболического уравнения первого рода в отрицательной части области.
Образец цитирования:
Р. Х. Макаова, “Об одной смешанной задаче для вырождающегося гиперболического уравнения третьего порядка”, Вестник КРАУНЦ. Физ.-мат. науки, 44:3 (2023), 19–29
\RBibitem{Mak23}
\by Р.~Х.~Макаова
\paper Об одной смешанной задаче для вырождающегося гиперболического уравнения третьего порядка
\jour Вестник КРАУНЦ. Физ.-мат. науки
\yr 2023
\vol 44
\issue 3
\pages 19--29
\mathnet{http://mi.mathnet.ru/vkam608}
\crossref{https://doi.org/10.26117/2079-6641-2023-44-3-19-29}