|
ДРОБНОЕ ИСЧИСЛЕНИЕ И ЕГО ПРИМЕНЕНИЕ
Задача Коши для обыкновенного дифференциального уравнения с оператором дробного дискретно распределенного дифференцирования
Л. Х. Гадзова Институт прикладной математики и автоматизации, 360000, г. Нальчик, ул. Шортанова, 89А
Аннотация:
Для обыкновенного дифференциального уравнения с оператором дробного дискретно распределенного дифференцирования исследована начальная задача, получена формула Лагранжа. Решение найдено в явном виде и доказана теорема существования и единственности решения
Ключевые слова:
фундаментальное решение, задача Коши, оператор дробного дифференцирования, производная Капуто.
Поступила в редакцию: 08.06.2018
Образец цитирования:
Л. Х. Гадзова, “Задача Коши для обыкновенного дифференциального уравнения с оператором дробного дискретно распределенного дифференцирования”, Вестник КРАУНЦ. Физ.-мат. науки, 2018, № 3(23), 48–56
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vkam254 https://www.mathnet.ru/rus/vkam/y2018/i3/p48
|
Статистика просмотров: |
Страница аннотации: | 264 | PDF полного текста: | 65 | Список литературы: | 36 |
|