|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
КОМПЬЮТЕРНОЕ ОБЕСПЕЧЕНИЕ И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА
Применение машинного обучения в прогнозировании предаварийных ситуаций в системах теплоснабжения
А. А. Ахваев, В. Ф. Шуршев Астраханский государственный технический университет, Астрахань, Российская Федерация
Аннотация:
Решение задачи прогнозирования в системах, характеризующихся проблемой подбора традиционного алгоритма для ее описания, сводится к технологии машинного обучения. В контексте прогнозирования аварий в системах теплоснабжения эта технология является наиболее эффективной. Осуществление прогноза сводится к задаче восстановления функции в общем контенте обучения с учителем. Из имеющихся инструментов машинного обучения следует использовать градиентный бустинг. Он работает по следующему принципу: на первых итерациях используются слабые алгоритмы, затем наращивается ансамбль постепенными улучшениями тех участков данных, где предыдущие модели «не доработали». Но при построении следующей простой модели она строится не просто на перевзвешенных наблюдениях, а так, чтобы лучшим образом приближать общий градиент целевой функции. Градиентный бустинг является одним из эффективных алгоритмов прогнозирования, и точность прогноза зависит от правильных входных данных (обучающая выборка). Исследуемая предметная область, а именно исследование аварийных ситуаций на тепловых сетях, имеет достаточные объемы накопленных данных для применения бустинга в качестве основного инструмента для прогноза.
Ключевые слова:
машинное обучение, бустинг, прогнозирование, мониторинг, функция потерь.
Поступила в редакцию: 23.04.2020
Образец цитирования:
А. А. Ахваев, В. Ф. Шуршев, “Применение машинного обучения в прогнозировании предаварийных ситуаций в системах теплоснабжения”, Вестн. Астрахан. гос. техн. ун-та. Сер. управление, вычисл. техн. информ., 2020, № 3, 74–81
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vagtu638 https://www.mathnet.ru/rus/vagtu/y2020/i3/p74
|
|