|
КОМПЬЮТЕРНОЕ ОБЕСПЕЧЕНИЕ И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА
Метод обнаружения вирусов-шифровальщиков в компьютерной системе на основе анализа их поведенческих признаков
А. Б. Калиев, А. Н. Марьенков Астраханский государственный университет,
Астрахань, Российская Федерация
Аннотация:
Показана низкая эффективность существующих методов противодействия вирусам-шифровальщикам (ВШ). Обоснована актуальность разработки новых подходов к выявлению ВШ в компьютерных системах (КС). Рассмотрены методы эвристического анализа в качестве новых подходов к обнаружению ВШ. Представлена новая методика обнаружения ВШ на основе анализа изменений значений параметров КС. Построены модели с использованием методов машинного обучения, позволяющие выявлять начавшуюся атаку ВШ на КС. Целью проведения эксперимента было получение модели, имеющей наиболее высокий процент выявления атак ВШ на КС и наименьшее количество ложных срабатываний. В качестве алгоритмов моделирования были использованы наивный байесовский классификатор, многослойная нейронная сеть, машина опорных векторов, алгоритм градиентного бустинга CatBoost. Для построения моделей использованы программные пакеты, написанные с использованием языка программирования Python. Данные для обучения были собраны в результате экспериментов с наиболее популярными ВШ. В качестве ключевых метрик эффективности моделей машинного обучения выбраны следующие типичные метрики: precision, recall, F1-метрика, accuracy, AUC. В ходе проведенных экспериментов сформированы значения матриц ошибок и получены основные показатели метрик качества моделей. Помимо метрик эффективности классификации приведено среднее время выполнения операций по классификации для каждой из моделей. В процессе анализа результатов обучения моделей было выявлено, что наилучшими показателями по выявлению ВШ в КС обладает модель, построенная на основе алгоритма градиентного бустинга CatBoost. Сделаны выводы о возможности применения данного подхода для выявления атак ВШ на КС.
Ключевые слова:
вирус-шифровальщик, выявление вирусов, компьютерная система, программное обеспечение, методы эвристического анализа, машинное обучение.
Поступила в редакцию: 12.09.2019
Образец цитирования:
А. Б. Калиев, А. Н. Марьенков, “Метод обнаружения вирусов-шифровальщиков в компьютерной системе на основе анализа их поведенческих признаков”, Вестн. Астрахан. гос. техн. ун-та. Сер. управление, вычисл. техн. информ., 2020, № 1, 41–49
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vagtu614 https://www.mathnet.ru/rus/vagtu/y2020/i1/p41
|
|