|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
КОМПЬЮТЕРНОЕ ОБЕСПЕЧЕНИЕ И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА
Повышение качества классификации объектов на основе введения новой метрики кластеризации
Р. Ю. Деминаa, И. М. Ажмухамедовb a Астраханский государственный технический университет,
Астрахань, Российская Федерация
b Астраханский государственный университет,
Астрахань, Российская Федерация
Аннотация:
Кластеризация объектов является одной из основных задач машинного обучения. Она нашла широкое применение в различных предметных областях: маркетинге, социологии, психологии и пр. В основе алгоритмов кластеризации, как правило, лежит метрика, отражающая расстояние между объектами. Однако в ряде случаев пользоваться расстоянием между объектами нецелесообразно. В определенных ситуациях можно говорить о том, что один объект похож на второй, притом что второй объект не похож на первый. Такими объектами могут являться, например, оригинал картины и ее копия. Для подобных случаев в работе предложена мера схожести объектов, которая отражает, какая часть признаков одного объекта содержится в другом. На основании данной меры строится матрица схожести, анализ которой позволяет выявлять кластеры взаимно схожих объектов. При проведении апробации предложенного метода кластеризации индекс Рэнда (доля корректно связанных или не связанных между собой объектов) составил 0,93. Предложен алгоритм, позволяющий формировать множество максимально различающихся между собой объектов. Множество объектов, сформированное подобным образом, может в дальнейшем стать обучающим множеством для классификаторов и повысить верность их распознавания.
Ключевые слова:
кластеризация, метрика, сравнение, мера схожести, обучающее множество, признаки объекта, индекс Рэнда.
Поступила в редакцию: 19.09.2019
Образец цитирования:
Р. Ю. Демина, И. М. Ажмухамедов, “Повышение качества классификации объектов на основе введения новой метрики кластеризации”, Вестн. Астрахан. гос. техн. ун-та. Сер. управление, вычисл. техн. информ., 2019, № 4, 106–114
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vagtu605 https://www.mathnet.ru/rus/vagtu/y2019/i4/p106
|
Статистика просмотров: |
Страница аннотации: | 159 | PDF полного текста: | 45 | Список литературы: | 31 |
|