Ученые записки Казанского университета. Серия Физико-математические науки
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Учен. зап. Казан. ун-та. Сер. Физ.-матем. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Ученые записки Казанского университета. Серия Физико-математические науки, 2022, том 164, книга 4, страницы 285–301
DOI: https://doi.org/10.26907/2541-7746.2022.4.285-301
(Mi uzku1615)
 

Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)

Точное решение типа Куэтта – Пуазейля для установившихся концентрационных течений

Н. В. Бурмашеваab, Е. Ю. Просвиряковab

a Институт машиноведения имени Э.С. Горкунова УрО РАН, г. Екатеринбург, 620049, Россия
b Уральский федеральный университет, г. Екатеринбург, 620002, Россия
Список литературы:
Аннотация: Представлено новое точное решение, позволяющее прогнозировать свойства поля скорости, давления и распределения примеси при установившихся сдвиговых течениях вязких несжимаемых жидкостей в протяженном горизонтальном слое. Для описания концентрационной конвекции построена математическая модель на основе уравнений Обербека – Буссинеска с линейной зависимостью плотности от концентрации. Полагается, что одна из границ слоя (нижняя) является непроницаемой для растворенного в жидкости вещества (примеси) и на ней полагается справедливым эффект прилипания жидкости. Течение индуцируется неоднородным распределением примеси и давления на верхней границе рассматриваемого слоя. На верхней границе задается однородное распределение скоростей. Построенное решение принадлежит семействам Остроумова – Бириха и Линя – Сидорова – Аристова. Поле скоростей описывается двумерным профилем Куэтта, то есть обе компоненты скорости зависят от вертикальной поперечной координаты. Концентрация и давление описываются линейными формами относительно горизонтальных (продольных) координат с коэффициентами, зависящими от третьей координаты. Структура точного решения выбрана таким образом, чтобы тождественно удовлетворялось уравнение несжимаемости. Это позволило разрешить переопределенную квадратично нелинейную систему в частных производных. Неизвестные функции, определяющие гидродинамические поля, после подстановки в стационарную систему уравнений Обербека – Буссинеска, дополненную уравнениями диффузии и несжимаемости, найдены посредством интегрирования системы обыкновенных дифференциальных уравнений. Эта система имеет тринадцатый порядок и допускает точное полиномиальное решение. Показано, что данное решение способно описывать возникновение нескольких зон противотечений и немонотонный характер удельной кинетической энергии, имеющей до двух нулей. Полученные точные решения способны иллюстрировать множественную стратификацию поля касательных напряжений, поля давления и концентрационного поля. Таким образом, гидродинамические поля имеют сложную топологию, определяемую зависимостью скоростей, давления и концентрации от поперечной координаты.
Ключевые слова: концентрационная конвекция, точное решение, течение Куэтта – Пуазейля.
Поступила в редакцию: 19.04.2022
Тип публикации: Статья
УДК: 532.5
Образец цитирования: Н. В. Бурмашева, Е. Ю. Просвиряков, “Точное решение типа Куэтта – Пуазейля для установившихся концентрационных течений”, Учен. зап. Казан. ун-та. Сер. Физ.-матем. науки, 164, № 4, Изд-во Казанского ун-та, Казань, 2022, 285–301
Цитирование в формате AMSBIB
\RBibitem{BurPro22}
\by Н.~В.~Бурмашева, Е.~Ю.~Просвиряков
\paper Точное решение типа Куэтта -- Пуазейля для установившихся концентрационных течений
\serial Учен. зап. Казан. ун-та. Сер. Физ.-матем. науки
\yr 2022
\vol 164
\issue 4
\pages 285--301
\publ Изд-во Казанского ун-та
\publaddr Казань
\mathnet{http://mi.mathnet.ru/uzku1615}
\crossref{https://doi.org/10.26907/2541-7746.2022.4.285-301}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/uzku1615
  • https://www.mathnet.ru/rus/uzku/v164/i4/p285
  • Эта публикация цитируется в следующих 3 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ученые записки Казанского университета. Серия Физико-математические науки
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024