|
Ученые записки Ереванского государственного университета, серия Физические и Математические науки, 2018, том 52, выпуск 2, страницы 93–100
(Mi uzeru464)
|
|
|
|
Mathematics
On a uniqueness theorem for the Franklin system
[Об одной теореме единственности для системы Франклина]
K. A. Navasardyan Chair of Numerical Analysis and Mathematical Modelling YSU, Armenia
Аннотация:
В работе доказано, что существуют нетривиальный ряд по системе Франклина и последовательность $M_n$ такие, что последовательность частичных сумм $S_{M_n}(x)$ ряда почти всюду сходится к нулю и $\lambda\cdot \mathrm{mes}\left\{x:sup_n\big|S_{M_n}(x)\big|>\lambda\right\}\to 0$ при $\lambda\to+\infty$. Этот факт показывает, что условие ограниченности отношения $M_{n+1} /M_n$, встречающееся в ранее доказанных теоремах единственности, существенно.
Ключевые слова:
majorant of partial sums, Franklin system, uniqueness.
Поступила в редакцию: 22.02.2018 Исправленный вариант: 20.04.2018
Образец цитирования:
K. A. Navasardyan, “On a uniqueness theorem for the Franklin system”, Уч. записки ЕГУ, сер. Физика и Математика, 52:2 (2018), 93–100
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/uzeru464 https://www.mathnet.ru/rus/uzeru/v52/i2/p93
|
Статистика просмотров: |
Страница аннотации: | 122 | PDF полного текста: | 38 | Список литературы: | 27 |
|