|
Ученые записки Ереванского государственного университета, серия Физические и Математические науки, 2006, выпуск 2, страницы 49–58
(Mi uzeru398)
|
|
|
|
Mechanics
Устойчивость решения игровой задачи сближения-уклонения с несколькими целевыми множествами для систем с переменной динамикой
М. С. Габриелян, А. С. Члингарян Кафедра теоретической механики ЕГУ
Аннотация:
Рассматривается устойчивость решений игровых задач сближения-уклонения с $m$ целевыми множествами, когда объект подчиняется системе нелинейных нестационарных дифференциальных уравнений с переменной динамикой, т.е. динамика системы шаг за шагом меняется, а порядок встреч с целевыми множествами зафиксирован. Предполагается, что моменты переключения систем являются постоянными величинами. Строится семейство $u$-стабильных мостов. Используются кусочно-позиционная стратегия, экстремальная к этому семейству, и теорема об устойчивости решения игровых задач сближения-уклонения с одним целевым множеством относительно информационных помех, изученная Н.Н. Красовским. Получены условия, при которых решения вышеописанных игровых задач устойчивы относительно информационных помех.
Поступила в редакцию: 24.11.2005
Образец цитирования:
М. С. Габриелян, А. С. Члингарян, “Устойчивость решения игровой задачи сближения-уклонения с несколькими целевыми множествами для систем с переменной динамикой”, Уч. записки ЕГУ, сер. Физика и Математика, 2006, № 2, 49–58
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/uzeru398 https://www.mathnet.ru/rus/uzeru/y2006/i2/p49
|
Статистика просмотров: |
Страница аннотации: | 161 | PDF полного текста: | 42 | Список литературы: | 43 |
|