|
Asymptotic solutions of a parabolic equation near singular points of $A$ and $B$ types
Sergey V. Zakharov Krasovskii Institute of Mathematics and Mechanics,
Ural Branch of the Russian Academy of Sciences,
16 S. Kovalevskaya str., Ekaterinburg, Russia, 620990
Аннотация:
The Cauchy problem for a quasi-linear parabolic equation with a small parameter multiplying a higher derivative is considered in two cases when the solution of the limit problem has a point of gradient catastrophe. Asymptotic solutions are found by using the Cole-Hopf transform. The integrals determining the asymptotic solutions correspond to the Lagrange singularities of type $A$ and the boundary singularities of type $B$. The behavior of the asymptotic solutions is described in terms of the weighted Sobolev spaces.
Ключевые слова:
quasi-linear parabolic equation, Cole-Hopf transform, singular points, asymptotic solutions, Whitney fold singularity, Il’in’s universal solution, weighted Sobolev spaces.
Образец цитирования:
Sergey V. Zakharov, “Asymptotic solutions of a parabolic equation near singular points of $A$ and $B$ types”, Ural Math. J., 5:1 (2019), 101–108
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj78 https://www.mathnet.ru/rus/umj/v5/i1/p101
|
Статистика просмотров: |
Страница аннотации: | 132 | PDF полного текста: | 52 | Список литературы: | 34 |
|