|
Polynomials least deviating from zero in $L^p(-1;1) $, $ 0 \le p \le \infty $, with a constraint on the location of
their roots
Alena E. Rokina Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Аннотация:
We study Chebyshev's problem on polynomials that deviate least from zero with respect to $L^p$-means on the interval $[-1;1]$ with a constraint on the location of roots of polynomials. More precisely, we consider the problem on the set $\mathcal{P}_n(D_R)$ of polynomials of degree $n$ that have unit leading coefficient and do not vanish in an open disk of radius $R \ge 1$. An exact solution is obtained for the geometric mean (for $p=0$) for all $R \ge 1$; and for $0<p<\infty$ for all $R \ge 1$ in the case of polynomials of even degree. For $0<p<\infty$ and $R\ge 1$, we obtain two-sided estimates of the value of the least deviation.
Ключевые слова:
Algebraic polynomials, Chebyshev polynomials, сonstraints on the roots of a polynomial.
Образец цитирования:
Alena E. Rokina, “Polynomials least deviating from zero in $L^p(-1;1) $, $ 0 \le p \le \infty $, with a constraint on the location of
their roots”, Ural Math. J., 9:2 (2023), 157–164
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj212 https://www.mathnet.ru/rus/umj/v9/i2/p157
|
Статистика просмотров: |
Страница аннотации: | 65 | PDF полного текста: | 25 | Список литературы: | 21 |
|