|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
On two-sided unidirectional mean value inequality in a Fréchet smooth space
Dmitry V. Khlopin N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Аннотация:
The paper is devoted to a new unidirectional mean value inequality for the Fréchet subdifferential of a continuous function. This mean value inequality finds an intermediate point and localizes its value both from above and from below; for this reason, the inequality is called two-sided. The inequality is considered for a continuous function defined on a Fréchet smooth space. This class of Banach spaces includes the case of a reflexive space and the case of a separable Asplund space. As some application of these inequalities, we give an upper estimate for the Fréchet subdifferential of the upper limit of continuous functions defined on a reflexive space.
Ключевые слова:
Smooth Banach space, Fréchet subdifferential, unidirectional mean value inequality, upper limit of continuous functions.
Образец цитирования:
Dmitry V. Khlopin, “On two-sided unidirectional mean value inequality in a Fréchet smooth space”, Ural Math. J., 9:2 (2023), 132–140
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj210 https://www.mathnet.ru/rus/umj/v9/i2/p132
|
Статистика просмотров: |
Страница аннотации: | 43 | PDF полного текста: | 20 | Список литературы: | 21 |
|