|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
A new characterization of symmetric dunkl and $q$-dunkl-classical orthogonal polynomials
Yahia Habbachi Université de Gabès
Аннотация:
In this paper, we consider the following $\mathcal{L}$-difference equation $$\Phi(x) \mathcal{L}P_{n+1}(x)=(\xi_nx+\vartheta_n)P_{n+1}(x)+\lambda_nP_{n}(x),\quad n\geq0,$$ where $\Phi$ is a monic polynomial (even), $\deg\Phi\leq2$, $\xi_n,\,\vartheta_n,\,\lambda_n,\,n\geq0$, are complex numbers and $\mathcal{L}$ is either the Dunkl operator $T_\mu$ or the the $q$-Dunkl operator $T_{(\theta,q)}$. We show that if $\mathcal{L}=T_\mu$, then the only symmetric orthogonal polynomials satisfying the previous equation are, up a dilation, the generalized Hermite polynomials and the generalized Gegenbauer polynomials and if $\mathcal{L}=T_{(\theta,q)}$, then the $q^2$-analogue of generalized
Hermite and the $q^2$-analogue of generalized Gegenbauer polynomials are, up a dilation, the only orthogonal polynomials sequences
satisfying the $\mathcal{L}$-difference equation.
Ключевые слова:
Orthogonal polynomials, Dunkl operator, $q$-Dunkl operator.
Образец цитирования:
Yahia Habbachi, “A new characterization of symmetric dunkl and $q$-dunkl-classical orthogonal polynomials”, Ural Math. J., 9:2 (2023), 109–120
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj208 https://www.mathnet.ru/rus/umj/v9/i2/p109
|
Статистика просмотров: |
Страница аннотации: | 37 | PDF полного текста: | 42 | Список литературы: | 16 |
|