|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Countable compactness modulo an ideal of natural numbers
Prasenjit Bal, Debjani Rakshit, Susmita Sarkar ICFAI University Tripura
Аннотация:
In this article, we introduce the idea of $I$-compactness as a covering property through ideals of $\mathbb N$ and regardless of the $I$-convergent sequences of points. The frameworks of $s$-compactness, compactness and sequential compactness are compared to the structure of $I$-compact space. We began our research by looking at some fundamental characteristics, such as the nature of a subspace of an $I$-compact space, then investigated its attributes in regular and separable space. Finally, various features resembling finite intersection property have been investigated, and a connection between $I$-compactness and sequential $I$-compactness has been established.
Ключевые слова:
ideal, open cover, compact space, $I$-convergence.
Образец цитирования:
Prasenjit Bal, Debjani Rakshit, Susmita Sarkar, “Countable compactness modulo an ideal of natural numbers”, Ural Math. J., 9:2 (2023), 28–35
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj201 https://www.mathnet.ru/rus/umj/v9/i2/p28
|
Статистика просмотров: |
Страница аннотации: | 41 | PDF полного текста: | 13 | Список литературы: | 18 |
|