|
Hyers–Ulam–Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side
Alexander N. Sesekin, Anna D. Kandrina Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Аннотация:
The paper considers the Hyers–Ulam–Rassias stability for systems of nonlinear differential equations with a generalized action on the right-hand side, for example, containing impulses — delta functions. The fact that the derivatives in the equation are considered distributions required a correction of the well-known Hyers–Ulam–Rassias definition of stability for such equations. Sufficient conditions are obtained that ensure the property under study.
Ключевые слова:
Hyers–Ulam–Rassias stability, differential equations, generalized actions, discontinuous trajectories.
Образец цитирования:
Alexander N. Sesekin, Anna D. Kandrina, “Hyers–Ulam–Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side”, Ural Math. J., 9:1 (2023), 147–152
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj195 https://www.mathnet.ru/rus/umj/v9/i1/p147
|
Статистика просмотров: |
Страница аннотации: | 78 | PDF полного текста: | 25 | Список литературы: | 17 |
|