|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
On one inequality of different metrics for trigonometric polynomials
Vitalii V. Arestovab, Marina V. Deikalovaab a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University
Аннотация:
We study the sharp inequality between the uniform norm and $L^p(0,\pi/2)$-norm of polynomials in the system $\mathscr{C}=\{\cos (2k+1)x\}_{k=0}^\infty$ of cosines with odd harmonics. We investigate the limit behavior of the best constant in this inequality with respect to the order $n$ of polynomials as $n\to\infty$ and provide a characterization of the extremal polynomial in the inequality for a fixed order of polynomials.
Ключевые слова:
trigonometric cosine polynomial in odd harmonics, Nikol'skii different metrics inequality.
Образец цитирования:
Vitalii V. Arestov, Marina V. Deikalova, “On one inequality of different metrics for trigonometric polynomials”, Ural Math. J., 8:2 (2022), 27–45
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj170 https://www.mathnet.ru/rus/umj/v8/i2/p27
|
Статистика просмотров: |
Страница аннотации: | 106 | PDF полного текста: | 64 | Список литературы: | 17 |
|