|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Bessel polynomials and some connection formulas in terms of the action of linear differential operators
Baghdadi Aloui, Jihad Souissi University of Gabes
Аннотация:
In this paper, we introduce the concept of the $\mathbb{B}_{\alpha}$-classical orthogonal polynomials, where $\mathbb{B}_{\alpha}$ is the raising operator $\mathbb{B}_{\alpha}:=x^2 \cdot {d}/{dx}+\big(2(\alpha-1)x+1\big)\mathbb{I}$, with nonzero complex number $\alpha$ and $\mathbb{I}$ representing the identity operator. We show that the Bessel polynomials $B^{(\alpha)}_n(x),\ n\geq0$, where $\alpha\neq-{m}/{2}, \ m\geq -2, \ m\in \mathbb{Z}$, are the only $\mathbb{B}_{\alpha}$-classical orthogonal polynomials. As an application, we present some new formulas for polynomial solution.
Ключевые слова:
classical orthogonal polynomials, linear functionals, Bessel polynomials, raising operators, connection formulas.
Образец цитирования:
Baghdadi Aloui, Jihad Souissi, “Bessel polynomials and some connection formulas in terms of the action of linear differential operators”, Ural Math. J., 8:2 (2022), 4–12
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj168 https://www.mathnet.ru/rus/umj/v8/i2/p4
|
Статистика просмотров: |
Страница аннотации: | 76 | PDF полного текста: | 54 | Список литературы: | 21 |
|