|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Matrix resolving functions in the linear group pursuit problem with fractional derivatives
Alena I. Machtakovaab, Nikolai N. Petrovab a Udmurt State University, Izhevsk
b N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Аннотация:
In finite-dimensional Euclidean space, we analyze the problem of pursuit of a single evader by a group of pursuers, which is described by a system of differential equations with Caputo fractional derivatives of order $\alpha$. The goal of the group of pursuers is the capture of the evader by at least m different pursuers (the instants of capture may or may not coincide). As a mathematical basis, we use matrix resolving functions that are generalizations of scalar resolving functions. We obtain sufficient conditions for multiple capture of a single evader in the class of quasi-strategies. We give examples illustrating the results obtained.
Ключевые слова:
differential game, group pursuit, pursuer, evader, fractional derivatives.
Образец цитирования:
Alena I. Machtakova, Nikolai N. Petrov, “Matrix resolving functions in the linear group pursuit problem with fractional derivatives”, Ural Math. J., 8:1 (2022), 76–89
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj163 https://www.mathnet.ru/rus/umj/v8/i1/p76
|
Статистика просмотров: |
Страница аннотации: | 113 | PDF полного текста: | 44 | Список литературы: | 25 |
|