|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Definite integral of logarithmic functions and powers in terms of the lerch function
Robert Reynolds, Allan Stauffer York University
Аннотация:
A family of generalized definite logarithmic integrals given by $$ \int_{0}^{1}\frac{\left(x^{ i m} (\log (a)+i \log (x))^k+x^{-i m} (\log (a)-i \log (x))^k\right)}{(x+1)^2}dx $$ built over the Lerch function has its analytic properties and special values listed in explicit detail. We use the general method as given in [5] to derive this integral. We then give a number of examples that can be derived from the general integral in terms of well known functions.
Ключевые слова:
entries of Gradshteyn and Ryzhik, Lerch function, Knuth's Series.
Образец цитирования:
Robert Reynolds, Allan Stauffer, “Definite integral of logarithmic functions and powers in terms of the lerch function”, Ural Math. J., 7:1 (2021), 96–101
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj140 https://www.mathnet.ru/rus/umj/v7/i1/p96
|
Статистика просмотров: |
Страница аннотации: | 101 | PDF полного текста: | 78 | Список литературы: | 17 |
|