|
On chromatic uniqueness of some complete tripartite graphs
Pavel A. Gein Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Аннотация:
Let $P(G, x)$ be a chromatic polynomial of a graph $G$. Two graphs $G$ and $H$ are called chromatically equivalent iff $P(G, x) = H(G, x)$. A graph $G$ is called chromatically unique if $G\simeq H$ for every $H$ chromatically equivalent to $G$. In this paper, the chromatic uniqueness of complete tripartite graphs $K(n_1, n_2, n_3)$ is proved for $n_1 \geqslant n_2 \geqslant n_3 \geqslant 2$ and $n_1 - n_3 \leqslant 5$.
Ключевые слова:
chromatic uniqueness, chromatic equivalence, complete multipartite graphs, chromatic polynomial.
Образец цитирования:
Pavel A. Gein, “On chromatic uniqueness of some complete tripartite graphs”, Ural Math. J., 7:1 (2021), 38–65
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj136 https://www.mathnet.ru/rus/umj/v7/i1/p38
|
|