|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Hahn's problem with respect to some perturbations of the raising operator $(X-c)$
Baghdadi Aloui, Jihad Souissi Université de Gabès
Аннотация:
In this paper, we study the Hahn's problem with respect to some raising operators perturbed of the operator $X-c$, where $c$ is an arbitrary complex number. More precisely, the two following characterizations hold: up to a normalization, the $q$-Hermite (resp. Charlier) polynomial is the only $H_{\alpha,q}$-classical (resp. \linebreak $\mathcal{S}_{\lambda}$-classical) orthogonal polynomial, where $H_{\alpha, q}:=X+\alpha H_q$ and $\mathcal{S}_{\lambda}:=(X+1)-\lambda\tau_{-1}$.
Ключевые слова:
orthogonal polynomials, linear functional, $\mathcal{O}$-classical polynomials, Raising operators, $q$-Hermite polynomials, Charlier polynomials.
Образец цитирования:
Baghdadi Aloui, Jihad Souissi, “Hahn's problem with respect to some perturbations of the raising operator $(X-c)$”, Ural Math. J., 6:2 (2020), 15–24
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj122 https://www.mathnet.ru/rus/umj/v6/i2/p15
|
|