|
Domination and edge domination in trees
B. Senthilkumar, Ya. B. Venkatakrishnan, N. Kumar SASTRA Deemed University
Аннотация:
Let $G=(V,E)$ be a simple graph. A set $S\subseteq V$ is a dominating set if every vertex in $V \setminus S$ is adjacent to a vertex in $S$. The domination number of a graph $G$, denoted by $\gamma(G)$ is the minimum cardinality of a dominating set of $G$. A set $D \subseteq E$ is an edge dominating set if every edge in $E\setminus D$ is adjacent to an edge in $D$. The edge domination number of a graph $G$, denoted by $\gamma'(G)$ is the minimum cardinality of an edge dominating set of $G$. We characterize trees with domination number equal to twice edge domination number.
Ключевые слова:
Edge dominating set, Dominating set, Trees.
Образец цитирования:
B. Senthilkumar, Ya. B. Venkatakrishnan, N. Kumar, “Domination and edge domination in trees”, Ural Math. J., 6:1 (2020), 147–152
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj118 https://www.mathnet.ru/rus/umj/v6/i1/p147
|
Статистика просмотров: |
Страница аннотации: | 101 | PDF полного текста: | 43 | Список литературы: | 15 |
|