|
Эта публикация цитируется в 10 научных статьях (всего в 10 статьях)
МЕТОДИЧЕСКИЕ ЗАМЕТКИ
Конечное значение затравочного заряда и связь отношения постоянных тонкой структуры физического и затравочного зарядов с нулевыми колебаниями электромагнитного поля в вакууме
В. И. Ритус Физический институт им. П. Н. Лебедева Российской академии наук, г. Москва
Аннотация:
Дуальность четырёхмерной электродинамики и двумерной теории скалярного безмассового поля приводит к функциональному совпадению спектров среднего числа фотонов, излучаемых точечным зарядом в 3+1-пространстве, со спектрами среднего числа пар скалярных квантов, испускаемых точечным зеркалом в 1+1-пространстве. Спектры различаются лишь множителем $e^2/\hbar c$ (хевисайдовы единицы). Требование тождественного совпадения спектров приводит к уникальным значениям точечного заряда $e_0=\pm \sqrt {\hbar c}$ и его постоянной тонкой структуры $\alpha _0=1/4\pi $, обладающим всеми свойствами, указанными Гелл-Маном и Лоу для конечного затравочного заряда. Перенормировочный фактор Дайсона $Z_3\equiv \alpha /\alpha _0=4\pi \alpha $ конечен и лежит в диапазоне $0<Z_3<1$ в согласии с правилом сумм спектрального представления Челлена–Лемана для точной функции Грина фотона. Значение $Z_3$ находится также в очень узком интервале $\alpha _{\rm L}<Z_3\equiv \alpha /\alpha _0=4\pi \alpha <\alpha _{\rm B}$ между значениями параметров $\alpha _{\rm L}=0{,}0916$ и $\alpha _{\rm B}=0{,}0923$, определяющих сдвиги $E_{\rm L,\,B}=\alpha _{\rm L,\,B}\hbar c/2r$ энергии нулевых флуктуаций электромагнитного поля в кубическом и сферическом резонаторах с ребром куба, равным диаметру сферы, $L=2r$. В этом случае куб описывает сферу. Очень малое различие коэффициентов $\alpha _{\rm L,\,B}$ объясняется тем, что все многогранники, описывающие сферу, несмотря на различие их форм, обладают общим топологическим инвариантом — отношением поверхности к объёму $S/V=3/r$ — таким же, как у самой сферы. Ему пропорциональны и сдвиги энергии нулевых колебаний в таких резонаторах: $E_{\rm L,\,B}=\alpha _{\rm L,\,B}\hbar cS/6V$. С другой стороны, сдвиги $E_{\rm L,\,B}=\alpha _{\rm L,\,B}\hbar c/2r$ энергии нулевых колебаний электромагнитного поля по существу совпадают с энергией среднеквадратичных флуктуаций средних по объёму электрического и магнитного полей в резонаторе, равной $Z_3\hbar c/2r$ по порядку величины. Отсюда следует, что $\alpha _{\rm L,\,B}\approx Z_3$, как и должно быть для коэффициентов $\alpha _\gamma $ сдвигов $E_\gamma =\alpha _\gamma \hbar c/2r$ в других резонаторах $\gamma $, описывающих сферу. Близость $\alpha _{\rm L}$ и $\alpha _{\rm B}$ к $Z_3$-фактору подтверждается спектральным представлением Челлена–Лемана и согласуется с асимптотическими условиями, связывающими амплитуды рождения фотона свободным и взаимодействующим векторными полями.
Поступила: 9 июня 2021 г. Доработана: 25 октября 2021 г. Одобрена в печать: 27 февраля 2022 г.
Образец цитирования:
В. И. Ритус, “Конечное значение затравочного заряда и связь отношения постоянных тонкой структуры физического и затравочного зарядов с нулевыми колебаниями электромагнитного поля в вакууме”, УФН, 192:5 (2022), 507–526; Phys. Usp., 65:5 (2022), 468–486
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ufn7101 https://www.mathnet.ru/rus/ufn/v192/i5/p507
|
Статистика просмотров: |
Страница аннотации: | 162 | PDF полного текста: | 32 | Список литературы: | 35 | Первая страница: | 12 |
|