|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
ОБЗОРЫ АКТУАЛЬНЫХ ПРОБЛЕМ
Ускорение частиц в космосе: универсальный механизм?
М. И. Панасюкa, Л. И. Мирошниченкоab a Московский государственный университет им. М. В. Ломоносова, Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына
b Институт земного магнетизма, ионосферы и распространения радиоволн им. Н. В. Пушкова РАН, г. Троицк, Москва
Аннотация:
С современных позиций анализируются экспериментальные доказательства в пользу или против существования универсального механизма ускорения заряженных частиц во Вселенной. Реализован чисто феноменологический подход к этой очень сложной проблеме. Рассмотрение проводится для различных масштабов космоса, начиная от магнитосфер Земли и других планет Солнечной системы до атмосферы Солнца, гелиосферы, вспышек сверхновых звёзд и внегалактических объектов, ответственных за генерацию космических лучей предельно высоких энергий. Показано, что во Вселенной существует большое многообразие механизмов ускорения. Однако данные по ядерному составу ускоренных частиц, полученные в ходе многочисленных экспериментов, могут свидетельствовать в пользу глобального характера стохастического механизма ускорения типа Ферми, свойственного различным астрофизическим объектам. Нельзя исключить, что данный механизм может быть доминирующим над другими. Тем не менее ряд экспериментальных наблюдений не укладывается в рамки такого вывода. Возможно, в некоторых космических объектах существует иерархия ускорительных механизмов, когда после предварительного ускорения одним механизмом включаются другие — последовательно или на альтернативной основе. В связи с этим рассматриваются все доступные современные данные pro et contra глобального “присутствия” механизма типа Ферми.
Поступила: 5 ноября 2020 г. Доработана: 14 июля 2021 г. Одобрена в печать: 17 июля 2021 г.
Образец цитирования:
М. И. Панасюк, Л. И. Мирошниченко, “Ускорение частиц в космосе: универсальный механизм?”, УФН, 192:4 (2022), 413–442; Phys. Usp., 65:4 (2022), 379–405
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ufn6954 https://www.mathnet.ru/rus/ufn/v192/i4/p413
|
|