|
Эта публикация цитируется в 3883 научных статьях (всего в 3883 статьях)
Quantum computing
Unpaired Majorana fermions in quantum wires
A. Yu. Kitaevab a Microsoft Research, Microsoft, Redmond, WA 98052, USA
b L. D. Landau Institute for Theoretical Physics, Russian Academy of
Sciences, ul. Kosygina 2, 117940 Moscow, Russian Federation
Аннотация:
Certain one-dimensional Fermi systems have an energy gap in the bulk spectrum while boundary states are described by one Majorana operator per boundary point. A finite system of length $L$ possesses two ground states with an energy difference proportional to $\mathrm{exp}(-L/l_0)$ and different fermionic parities. Such systems can be used as qubits since they are intrinsically immune to decoherence. The property of a system to have boundary Majorana fermions is expressed as a condition on the bulk electron spectrum. The condition is satisfied in the presence of an arbitrary small energy gap induced by proximity of a three-dimensional p-wave superconductor, provided that the normal spectrum has an odd number of Fermi points in each half of the Brillouin zone (each spin component counts separately).
Образец цитирования:
A. Yu. Kitaev, “Unpaired Majorana fermions in quantum wires”, УФН, 171, приложение к № 10 (2001), 131–136; Phys. Usp., 44:10 suppl. (2001), s131–s136
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ufn5648 https://www.mathnet.ru/rus/ufn/v171/i13/p131
|
|