|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Quantum dots and wells, mesoscopic networks
Mesoscopic physics on graphs
G. Montambaux Laboratoire de Physique des Solides, associé au CNRS, Université Paris-Sud, 91405 Orsay Cedex, France
Аннотация:
This report is a summary of recent work on the properties of phase coherent diffusive conductors, especially in the geometry of networks — also called graphs — made of quasi-$\mathrm{1D}$ diffusive wires. These properties are written as a function of the spectral determinant of the diffusion equation (the product of its eigenvalues). For a network with $N$ nodes, this spectral determinant is related to the determinant of an $N\times N$ matrix which describes the connectivity of the network. I also consider the transmission through networks made of $\mathrm{1D}$ ballistic wires and show how the transmission coefficient can be written in terms of an $N\times N$ matrix very similar to the above one. Finally I present a few considerations on the relation between the magnetism of noninteracting systems and the magnetism of interacting diffusive systems.
Образец цитирования:
G. Montambaux, “Mesoscopic physics on graphs”, УФН, 171, приложение к № 10 (2001), 65–68; Phys. Usp., 44:10 suppl. (2001), s65–s68
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ufn5632 https://www.mathnet.ru/rus/ufn/v171/i13/p65
|
Статистика просмотров: |
Страница аннотации: | 88 | PDF полного текста: | 29 |
|