|
Уфимский математический журнал, 2024, том 16, выпуск 1, страницы 111–125
(Mi ufa687)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Inverse problem for subdiffusion equation with fractional Caputo derivative
R. R. Ashurovab, M. D. Shakarovaa a Institute of Mathematics, Uzbekistan Academy of Science, Student Town str., 100174, Tashkent, Uzbekistan
b University of Tashkent for Applied Sciences, Gavhar str. 1, 100149, Tashkent, Uzbekistan
Аннотация:
We consider an inverse problem on determining the right-hand side of the subdiffusion equation with the fractional Caputo derivative. The right-hand side of the equation has the form $f(x)g(t)$ and the unknown is the function $f(x)$. The condition $ u (x,t_0)= \psi (x) $ is taken as the over-determination condition, where $t_0$ is some interior point of the considered domain and $\psi (x) $ is a given function. By the Fourier method we show that under certain conditions on the functions $g(t)$ and $\psi (x) $ the solution of the inverse problem exists and is unique. We provide an example showing the violation of the uniqueness of the solution of the inverse problem for some sign-changing functions $g(t)$. For such functions $g(t)$ we find necessary and sufficient conditions on the initial function and on the function from the over-determination condition, which ensure the existence of a solution to the inverse problem.
Ключевые слова:
subdiffusion equation, forward and inverse problems, the Caputo derivatives, Fourier method.
Поступила в редакцию: 02.11.2022
Образец цитирования:
R. R. Ashurov, M. D. Shakarova, “Inverse problem for subdiffusion equation with fractional Caputo derivative”, Уфимск. матем. журн., 16:1 (2024), 111–125; Ufa Math. J., 16:1 (2024), 112–126
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ufa687 https://www.mathnet.ru/rus/ufa/v16/i1/p111
|
|