|
Уфимский математический журнал, 2023, том 15, выпуск 4, страницы 61–74
(Mi ufa676)
|
|
|
|
Об обратимости оператора Дюамеля в пространствах ультрадифференцируемых функций
О. А. Ивановаa, С. Н. Мелиховba a Южный федеральный университет, Институт математики, механики и компьютерных наук им. И.И. Воровича, ул. Мильчакова, 8а, 344090, г. Ростов-на-Дону, Россия
b Южный математический институт ВНЦ РАН, ул. Ватутина, 53, 362025, г. Владикавказ, Россия
Аннотация:
Пусть $\Delta$ — отличный от точки отрезок или (открытый) интервал на вещественной прямой, содержащий точку $0$. В пространстве целых функций, реализующем посредством преобразования Фурье-Лапласа сопряженное к пространству ультрадифференцируемых или всех бесконечно дифференцируемых функций на $\Delta$, исследованы операторы из коммутанта одномерного возмущения оператора обратного сдвига. Доказан критерий их обратимости. При этом применяется теория Рисса-Шаудера, использование которой в подобной ситуации восходит к работам В.А. Ткаченко. В топологическом сопряженном к исходному пространству введено умножение $\circledast$ и показано, что с ним это сопряженное пространство, наделенное сильной топологией, является топологической алгеброй. С помощью отображения, сопряженного к преобразованию Фурье-Лапласа, введенное умножение $\circledast$ реализовано как обобщенное произведение Дюамеля в соответствующем пространстве ультрадифференцируемых или бесконечно дифференцируемых функций на $\Delta$. Доказан критерий обратимости оператора Дюамеля в этом пространстве. Умножение $\circledast$ использовано, чтобы распространить на классы ультрадифференцируемых функций формулу Дюамеля. Она представляет решение неоднородного дифференциального уравнения конечного порядка с постоянными коэффициентами, удовлетворяющего нулевым начальным условиям в точке $0$, в виде произведения Дюамеля правой части и такого решения этого уравнения с правой частью, тождественно равной $1$. Полученные результаты охватывают как неквазианалитический, так и квазианалитический случай.
Ключевые слова:
оператор обратного сдвига, целая функция, произведение Дюамеля, ультрадифференцируемая функция.
Поступила в редакцию: 07.04.2023
Образец цитирования:
О. А. Иванова, С. Н. Мелихов, “Об обратимости оператора Дюамеля в пространствах ультрадифференцируемых функций”, Уфимск. матем. журн., 15:4 (2023), 61–74; Ufa Math. J., 15:4 (2023), 62–75
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ufa676 https://www.mathnet.ru/rus/ufa/v15/i4/p61
|
Статистика просмотров: |
Страница аннотации: | 102 | PDF русской версии: | 40 | PDF английской версии: | 16 | Список литературы: | 15 |
|