|
Уфимский математический журнал, 2021, том 13, выпуск 2, страницы 166–175
(Mi ufa567)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
On Darboux non-integrability of Hietarinta equation
S. Ya. Startsev Institute of Mathematics,
Ufa Federal Research Centre, RAS,
Chernyshevsky str., 112,
450008, Ufa, Russia
Аннотация:
The autonomous Hietarinta equation is a well-known example of the quad-graph discrete equation which is consistent around the cube. In a recent work, it was conjectured that this equation is Darboux integrable, that is, for each of two independent discrete variables there exist non-trivial functions that remain unchanged on solutions of the equation after the shift in this discrete variable. We demonstrate that this conjecture is not true for generic values of the equation coefficients.
To do this, we employ two-point invertible transformations introduced by R.I. Yamilov. We prove that an autonomous difference equation on the quad-graph cannot be Darboux integrable if a transformation of the above type maps solutions of this equation into its solutions. This implies that the generic Hietarinta equation is not Darboux integrable since the Hietarinta equation in the general case possesses the two-point invertible auto-transformations. Along the way, all Darboux integrable subcases of the Hietarinta equation are found. All of them are reduced by point transformations to already known integrable equations.
At the end of the article, we also briefly describe another way to prove the Darboux non-integrability of the Hietarinta equation. This alternative way is based on the known fact that a difference substitution relates this equation to a linear one. Thus, the Hietarinta equation gives us an example of a quad-graph equation that is linearizable but not Darboux integrable.
Ключевые слова:
Hietarinta equation, quad-graph equation, Bäcklund auto-transformation, Darboux integrability, C-integrability.
Поступила в редакцию: 21.02.2021
Образец цитирования:
S. Ya. Startsev, “On Darboux non-integrability of Hietarinta equation”, Уфимск. матем. журн., 13:2 (2021), 166–175; Ufa Math. J., 13:2 (2021), 160–169
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ufa567 https://www.mathnet.ru/rus/ufa/v13/i2/p166
|
Статистика просмотров: |
Страница аннотации: | 124 | PDF русской версии: | 65 | PDF английской версии: | 12 | Список литературы: | 18 |
|