|
Уфимский математический журнал, 2021, том 13, выпуск 2, страницы 121–140
(Mi ufa560)
|
|
|
|
On mKdV equations related to Kac-Moody algebras $A_5^{(1)}$ and $A_5^{(2)}$
V. S. Gerdjikovabcd a Institute of Mathematics and Informatics
Bulgarian Academy of Sciences,
Acad. Georgi Bonchev Str., Block 8,
1113, Sofia, Bulgaria
b Sankt-Petersburg State University of Aerospace Instrumentation
B. Morskaya, 67A,
190000, St-Petersburg, Russia
c Institute for Advanced Physical Studies,
111 Tsarigradsko chaussee,
1784, Sofia, Bulgaria
d Institute for Nuclear Research and Nuclear Energy
Bulgarian Academy of Sciences,
72 Tsarigradsko Chaussee, Blvd.,
1784, Sofia, Bulgaria
Аннотация:
We outline the derivation of the mKdV equations related to the Kac–Moody algebras $A_5^{(1)}$ and $A_5^{(2)}$.
First we formulate their Lax representations and provide details how they
can be obtained from generic Lax operators related to the algebra $sl(6)$
by applying proper Mikhailov type reduction groups $\mathbb{Z}_h$. Here $h$ is the Coxeter number of the relevant Kac–Moody algebra. Next we adapt Shabat's method for constructing the fundamental analytic solutions of the Lax operators $L$. Thus we are able to reduce the direct and inverse spectral problems for $L$ to Riemann–Hilbert problems (RHP) on the union of $2h$ rays $l_\nu$. They leave the origin of the complex $\lambda$-plane partitioning it into equal angles $\pi/h$. To each $l_\nu$ we associate a subalgebra $\mathfrak{g}_\nu$ which is a direct sum of $sl(2)$–subalgebras. In this way, to each regular solution of the RHP we can associate scattering data of $L$ consisting of scattering matrices $T_\nu \in \mathcal{G}_\nu$ and their Gauss decompositions. The main result of the paper states how to find the minimal sets of scattering data $\mathcal{T}_k$, $k=1,2$,
from $T_0$ and $T_1$ related to the rays $l_0$ and $l_1$. We prove that each of the minimal sets $\mathcal{T}_1$ and $\mathcal{T}_2$ allows one to reconstruct both the scattering matrices $T_\nu$, $\nu =0, 1, \dots 2h$ and the corresponding potentials of the Lax operators $L$.
Ключевые слова:
mKdV equations, Kac–Moody algebras, Lax operators,
minimal sets of scattering data.
Поступила в редакцию: 12.04.2021
Образец цитирования:
V. S. Gerdjikov, “On mKdV equations related to Kac-Moody algebras $A_5^{(1)}$ and $A_5^{(2)}$”, Уфимск. матем. журн., 13:2 (2021), 121–140; Ufa Math. J., 13:2 (2021), 115–134
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ufa560 https://www.mathnet.ru/rus/ufa/v13/i2/p121
|
Статистика просмотров: |
Страница аннотации: | 118 | PDF русской версии: | 70 | PDF английской версии: | 14 | Список литературы: | 25 |
|