|
Уфимский математический журнал, 2020, том 12, выпуск 2, страницы 21–27
(Mi ufa511)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
О порожденной двоякопериодической группой проблеме моментов для целых функций
Ф. Н. Гарифьяновa, Е. В. Стрежневаb a Казанский государственный энергетический университет,
ул. Красносельская, д. 51,
420066, г. Казань, РФ, РТ
b Казанский национальный исследовательский
технический университет им. А.Н. Туполева-КАИ,
ул. К. Маркса, д. 10,
420111, г. Казань, РФ, РТ
Аннотация:
Рассматривается лакунарная проблема моментов Стильтьеса с экспоненциальным весом. Решение ищется в классе целых функций экспоненциального типа, индикаторной диаграммой которых является некоторый квадрат. Построены нетривиальные решения соответствующей однородной задачи. Эта проблема сводится к исследованию линейного суммарного уравнения в классе функций, голоморфных вне четырех квадратов. На бесконечности у них нуль кратности не менее трех. Их граничные значения удовлетворяют условию Гельдера на любом компакте, не содержащем вершин квадратов. В вершинах допускаются, самое большее, логарифмические особенности. Решение ищется в виде интеграла типа Коши с неизвестной плотностью по границе этих квадратов. Предложен метод регуляризации суммарного уравнения. Выяснено условие равносильности этой регуляризации. Выделены частные случаи, когда полученное уравнение Фредгольма второго рода разрешимо. Для этого используется принцип сжимающих отображений в банаховом пространстве.
Ключевые слова:
метод регуляризации, краевые задачи для эллиптических функций, моменты целых функций экспоненциального типа.
Поступила в редакцию: 09.10.2019
Образец цитирования:
Ф. Н. Гарифьянов, Е. В. Стрежнева, “О порожденной двоякопериодической группой проблеме моментов для целых функций”, Уфимск. матем. журн., 12:2 (2020), 21–27; Ufa Math. J., 12:2 (2020), 21–27
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ufa511 https://www.mathnet.ru/rus/ufa/v12/i2/p21
|
Статистика просмотров: |
Страница аннотации: | 186 | PDF русской версии: | 54 | PDF английской версии: | 17 | Список литературы: | 30 |
|