|
Уфимский математический журнал, 2018, том 10, выпуск 4, страницы 123–129
(Mi ufa454)
|
|
|
|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
On inverse spectral problem and generalized Sturm nodal theorem for nonlinear boundary value problems
Ya. Il'yasovab, N. Valeevca a Institute of Mathematics, Ufa Federal Research Center, RAS, 450008, Ufa, Russia
b Instituto de Matemática e Estatística, Universidade Federal de Goiás, 74001-970, Goiania, Brazil
c Bashkir State University, 450076, Ufa, Russia
Аннотация:
In the present paper, we are concerned with the Sturm–Liouville operator $$\mathcal{L}[q] u:=-u''+q(x)u$$ subject to the separated boundary conditions. We suppose that $q \in L^2(0,\pi)$ and study a so-called inverse optimization spectral problem: given a potential $q_0$ and a value $\lambda_k $, where $k=1,2,\dots$, find a potential $\hat{q}$ closest to $q_0$ in the norm of $L^2(0,\pi)$ such that the value $\lambda_k$ coincides with $k$-th eigenvalue $\lambda_k(\hat{q})$ of the operator $\mathcal{L}[\hat{q}]$.
In the main result, we prove that this problem is related to the existence of a solution to a boundary value problem for the nonlinear equation
$$
-u''+q_0(x) u=\lambda_k u+\sigma u^3
$$
with $\sigma=1$ or $\sigma=-1$. This implies that the minimizing solution of the inverse optimization spectral problem can be obtained by solving the corresponding nonlinear boundary value problem. On the other hand, this relationship allows us to establish an explicit formula for the solution to the nonlinear equation by finding the minimizer of the corresponding inverse optimization spectral problem. As a consequence of this result, a new method of proving the generalized Sturm nodal theorem for the nonlinear boundary value problems is obtained.
Ключевые слова:
Sturm–Liouville operator, inverse optimization spectral problem, nodal theorem for the nonlinear boundary value problems.
Поступила в редакцию: 19.09.2018
Образец цитирования:
Ya. Il'yasov, N. Valeev, “On inverse spectral problem and generalized Sturm nodal theorem for nonlinear boundary value problems”, Уфимск. матем. журн., 10:4 (2018), 123–129; Ufa Math. J., 10:4 (2018), 122–128
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ufa454 https://www.mathnet.ru/rus/ufa/v10/i4/p123
|
Статистика просмотров: |
Страница аннотации: | 249 | PDF русской версии: | 87 | PDF английской версии: | 13 | Список литературы: | 51 |
|